PRESS RELEASE

A tRNA modification with aminovaleramide facilitates AUA decoding in protein synthesis

 

Authors

Kenjyo Miyauchi, Satoshi Kimura, Naho Akiyama, Kazuki Inoue, Kensuke Ishiguro, Thien-Son Vu, Veerasak Srisuknimit, Kenta Koyama, Akiko Soma, Asuteka Nagao, Mikako Shirouzu, Akimitsu Okamoto, Matthew K. Waldor, Tsutomu Suzuki

 

Abstract

Modified tRNA anticodons are critical for proper mRNA translation during protein synthesis. It is generally thought that almost all bacterial tRNAsIle use a modified cytidine—lysidine (L)—at the first position (34) of the anticodon to decipher the AUA codon as isoleucine (Ile). Here we report that tRNAsIle from plant organelles and a subset of bacteria contain a new cytidine derivative, designated 2-aminovaleramididine (ava2C). Like L34, ava2C34 governs both Ile-charging ability and AUA decoding. Cryo-electron microscopy structural analyses revealed molecular details of codon recognition by ava2C34 with a specific interaction between its terminal amide group and an mRNA residue 3′-adjacent to the AUA codon. These findings reveal the evolutionary variation of an essential tRNA modification and demonstrate the molecular basis of AUA decoding mediated by a unique tRNA modification.

 

 

Nature Chemical Biology: https://www.nature.com/articles/s41589-024-01726-x