PRESS RELEASE

Quantum Spin Liquid Emerging from Antiferromagnetic Order by Introducing Disorder

 

Authors

T. Furukawa, K. Miyagawa, T. Itou, M. Ito, H. Taniguchi, M. Saito, S. Iguchi, T. Sasaki, and K. Kanoda

 

Abstract

Quantum spin liquids, which are spin versions of quantum matter, have been sought after in systems with geometrical frustration. We show that disorder drives a classical magnet into a quantum spin liquid through conducting NMR experiments on an organic Mott insulator, κ−(ET)2Cu[N(CN)2]Cl. Antiferromagnetic ordering in the pristine crystal, when irradiated by x rays, disappears. Spin freezing, spin gap, and critical slowing down are not observed, but gapless spin excitations emerge, suggesting a novel role of disorder that brings forth a quantum spin liquid from a classical ordered state.

 

20150805_kanoda_e.png

Abstract URL:http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.077001