PRESS RELEASE
- Research
- 2024
Efficient extreme ultraviolet emission by multiple laser pulses
Authors
Tsukasa Sugiura, Hayato Yazawa, Hiroki Morita, Kazuyuki Sakaue, Daisuke Nakamura, Eiji J. Takahashi, Atsushi Sunahara, Gerry O’Sullivan, Shinichi Namba, and Takeshi Higashiguchi
Abstract
We demonstrated an efficient extreme ultraviolet (EUV) source at a wavelength of 13.5 nm using spatially separated multiple solid-state-laser pulse irradiation. The maximum conversion efficiency (CE) achieved was 3.8% for ±30° oblique laser pulse injection, which was about twice as high as that for single laser pulse irradiation of 1.7%, with an EUV source size of about 100 μm for two spatially separated laser pulses with a total laser energy of 500 mJ at a laser intensity of 2×1011 W/cm2. In addition, we achieved an EUV CE of 4.7% for ±60° oblique laser pulse injection, which was one of the highest values ever reported, in the case of a 1-μm solid-state laser-produced planar Sn target plasma by multiple laser pulse irradiation. This result suggests that multiple laser-pulse irradiation at high repetition rate operation could credibly provide the next technology for future high-power EUV sources and exposure tools toward future EUV technology nodes.
Applied Physics Letters: https://pubs.aip.org/aip/apl/article/125/3/034103/3303543/Efficient-extreme-ultraviolet-emission-by-multiple