Printable Elastic Conductors by in situ Formation of Silver Nanoparticles from Silver Flakes



Naoji Matsuhisa, Daishi Inoue, Peter Zalar, Hanbit Jin, Yorishige Matsuba, Akira Itoh, Tomoyuki Yokota, Daisuke Hashizume & Takao Someya



Printable elastic conductors promise large-area stretchable sensor/actuator networks for healthcare, wearables and robotics. Elastomers with metal nanoparticles are one of the best approaches to achieve high performance, but large-area utilization is limited by difficulties in their processability. Here we report a printable elastic conductor containing Ag nanoparticles that are formed in situ, solely by mixing micrometre-sized Ag flakes, fluorine rubbers, and surfactant. Our printable elastic composites exhibit conductivity higher than 4,000Scm−1 (highest value: 6,168Scm−1) at 0% strain, and 935Scm−1 when stretched up to 400%. Ag nanoparticle formation is influenced by the surfactant, heating processes, and elastomer molecular weight, resulting in a drastic improvement of conductivity. Fully printed sensor networks for stretchable robots are demonstrated, sensing pressure and temperature accurately, even when stretched over 250%.



Nature Materials:

EurekAlert :

ScienceDaily :