Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection



Rikizo Ikuta, Toshiki Kobayashi, Kenichiro Matsuki, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Takashi Yamamoto, Masato Koashi, Tetsuya Mukai, and Nobuyuki Imoto



Telecom photonic quantum networks with matter quantum systems enable a rich variety of applications, such as long-distance quantum cryptography and one-way quantum computing. Preparation of a heralded single excitation (HSE) in an atomic ensemble by detecting a telecom wavelength photon having a correlation with the atomic excitation is an important step. Such a system has been demonstrated with a quantum frequency conversion (QFC) to telecom wavelength employing a Rb atomic cloud. However, the limited wavelength selection prevents the next step toward linking various kinds of matter quantum systems through long-distance fiber-based quantum communications. Here we for the first time, demonstrate HSE with a solid-state-based QFC and a detector for a telecom wavelength that will have the great advantage of the utility of mature telecom technologies. We unambiguously show that the demonstrated HSE indicates non-classical statistics by the direct measurement of the autocorrelation function.




National Institute of Information and Communications Technology (NICT):