PRESS RELEASE

Emerging Disordered Layered-Herringbone Phase in Organic Semiconductors Unveiled by Electron Crystallography

Written by Public Relations Office | Dec 22, 2021 3:00:00 PM

 

Authors
Satoru Inoue, Kiyoshi Nikaido, Toshiki Higashino, Shunto Arai, Mutsuo Tanaka, Reiji Kumai, Seiji Tsuzuki, Sachio Horiuchi, Haruki Sugiyama, Yasutomo Segawa, Kiyofumi Takaba, Saori Maki-Yonekura, Koji Yonekura, Tatsuo Hasegawa

 

Abstract
The control of two-dimensional layered crystalline and/or liquid crystalline phases for π-extended organic molecules is crucial for expanding the potential of organic electronic materials and devices. In this work, we develop unique solution-processable organic semiconductors based on the unsymmetric substitution of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) with two different substituents, namely, phenylethynyl (PE) and normal alkyl with different chain lengths n (−CnH2n+1), both of which exhibit structural flexibility while maintaining the rod-like nature over the entire molecule. A distinctive layered solid crystalline phase, analogous to the smectic liquid crystalline phase, is obtainable in PE-BTBT-Cn at n = 6, where the substituent lengths are almost the same. The BTBT moiety maintains a rigid layered-herringbone (LHB) packing, whereas the molecular long axis exhibits a complete orientational disorder. We refer to this packing as disordered LHB (d-LHB), the unique geometry of which can be analyzed by the emerging technique of microcrystal electron diffraction crystallography. The intermolecular core–core interactions stabilize the d-LHB packing, enabling a relatively high field-effect mobility of approximately 3 cm2 V–1 s–1. In contrast, PE-BTBT-Cn with longer alkyl chains (n = 8, 10, 12) exhibits higher mobility of approximately 7 cm2 V–1 s–1 by constituting bilayer-type LHB (b-LHB), which is associated with the unsymmetrical length of the substituents. We discuss the correlation and competition among the d-LHB, b-LHB, and smectic liquid crystalline phases based on the structural, thermal, and transistor characteristics. These findings demonstrate the controllability of various phases in layered organic semiconductors.

 

 

Chemistry of Materials:https://pubs.acs.org/doi/10.1021/acs.chemmater.1c02793