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The Graduate School Entrance Examination
Physics
1:00 pm—3:00 pm

GENERAL INSTRUCTIONS
Answers should be written in English or Japanese.

1. Do not open the problem booklets, whether in English or Japanese, until the start of the
examination is announced.

2. Notify your proctor if you find any printing or production errors.
3.  Answer two problems out of the four problems in the problem booklet.

4. You are given two answer sheets. Use one answer sheet for each problem. You may use
the reverse side if necessary.

5. Fill in your examinee number and the problem number in the designated places at the
top of each answer sheet. The wedge-shaped marks on the top edge of each answer
sheet represent the problem number that you answer (P 1, P 2, P 3, P 4) and also the
class of the course (master M, doctor D) that you are applying. At the end of the
examination, follow your proctor's instructions and cut out carefully the two
corresponding wedge marks per sheet.

6. You may use the blank sheets of the problem booklets for rough papers without
detaching them.

7.  Any answer sheet with marks or symbols irrelevant to your answers is considered to be
invalid.

8. You may not take the booklets or answer sheets with you after the examination.

Examinee Number | No.

Write your examinee number in the space provided above.



Problem 1

Consider an object A, consisting of a tube of outer radius 2r and inner radius r, and
a solid cylinder of radius r that fits inside the tube. The tube and the solid cylinder share
the same central axis as shown in Fig. 1.1. The tube and the solid cylinder are rigid bodies
of uniform identical material. The tube has mass 3m and the solid cylinder has mass m.
The amount of clearance between the inner surface of the tube and the outer surface of
the solid cylinder can be ignored, and the solid cylinder can rotate inside the tube.
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Figure 1.1

I. Derive the moment of inertia of the tube I and the solid cylinder I, around the
central axis, respectively. Also write the derivation process.



II. Consider a horizontal plane QR and an inclined plane (a slope) PQ at angle 8 to
the horizontal plane as shown in Fig. 1.2. The slope PQ has friction, and the
horizontal plane QR has no friction. It is assumed that the object A can move between
the horizontal plane and the slope while maintaining contact, and that there is no
energy loss in transition from movement between the slope and the horizontal plane.
The acceleration due to gravity is g.

In all of the following questions, the height of the central axis of the object A when
on the horizontal plane is set as 0. You may use It and I as the moment of inertia
of the tube and the solid cylinder around the central axis, respectively.
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Figure 1.2

1. Consider the case where the friction between the inner surface of the tube and
the outer surface of the solid cylinder can be ignored and the solid cylinder can
rotate smoothly inside the tube around the same central axis. The object A was
gently placed on the slope PQ so that the height of the central axis of the object A
was h as shown in Fig. 1.2. Both the tube and the solid cylinder were not
rotating. The tube then started rolling down the slope PQ smoothly without
sliding,

Obtain the translational velocity of the center of gravity of the object A in the
horizontal direction v,, the angular velocity of the tube around its central axis
w1, and the angular velocity of the solid cylinder around its central axis wcq,
immediately after reaching the horizontal plane.



2. Next, consider the case where the solid cylinder can rotate inside the tube

around the same central axis, but friction acts between the inner surface of the
tube and the outer surface of the solid cylinder. The magnitude of the dynamic
friction force between the tube and the solid cylinderis f. AsshowninFig. 1.2,
when the object A was gently placed on the slope PQ so that the central axis of
the object A was set at the height of h while neither the solid cylinder nor the
tube was rotating, the object A started rolling smoothly down the slope PQ,
without sliding. At this time, it was observed that the inner solid cylinder was

slidingly rotating with a different angular velocity to the outer tube. Answer the

following questions.

ey

(if)

Consider the motion of the object A on the slope PQ. As shown in the
Fig. 1.2, consider a coordinate system in which the x axis is parallel
to the slope PQ and the y axis is perpendicular. The translational
velocity of the center of gravity of the object A along the slope is v,
the angular velocity of the tube around its central axis is wq, the
angular velocity of the solid cylinder around its central axis is wc, the
x component and the y component of resultant force acting between
the tube and the solid cylinder are N, and Ny respectively, and
normal force and friction force acting on the tube from the slope are
Npq and Fpq respectively.

@ Show equations of motion of the tube's center of gravity motion in
the x direction and the y direction and the tube’s rotational
equation of motion around the central axis of the tube. Also show
the relation between v and wr.

@ Show equations of motion of the solid cylinder's center of gravity
motion in the x direction and the y direction and the solid
cylinder’s rotational equation of motion around the central axis of
the solid cylinder.

Consider the motion of the object A on the horizontal plane QR.

Answer the following questions by assuming that the translational

velocity of the center of gravity of the object A along the horizontal

plane; the angular velocity of the tube around its central axis, and the
angular velocity of the solid cylinder around its central axis
immediately after reaching the horizontal plane are vg, wrq, and

Weq, respectively. While the object A traveled on the horizontal plane

QR, the angular velocity of the tube around its central axis and that of

the solid cylinder around its central axis eventually became equal.



@

@

Derive the translational velocity of the center of gravity of the
object A along the horizontal plane vy and the angular velocity
of the object A around its central axis wg.

Derive the energy loss due to the dynamic friction between the
inner surface of the tube and the outer surface of the solid cylinder
during the movement of object A on the horizontal plane QR.



Problem 2

When an electric current flows through a conductor, the electric field and current
density inside the conductor have spatial distributions depending on the frequency.
Consider this phenomenon in the following questions. There is a conductor with
conductivity o filling the region —h <y < h (h # 0) in vacuum, as shown in Fig. 2.1.
The conductor has infinite lengths in the x and z directions. An electric field E,
applied in the z direction generates electric current density j, = ¢E, in the conductor.
The permittivity and magnetic permeability of the conductor are equal to the vacuum
permittivity £, and vacuum permeability u,, respectively. Due to symmetry, the
magnetic flux density generated inside and outside the conductor by j, has only an x
component, By,(y). Positive E, denotes an electric field in the +z direction, and
positive B, denotes a magnetic flux density in the +x direction.
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Figure 2.1

I.  Consider the case where the electric field E, is uniform and static.

1. Express the amount of heat generation per unit volume and unit time inside the
conductor, using ¢ and j,.

2. Express the magnetic flux density B, as a function of y, for the region
outside the conductor y < —h, inside the conductor —h < y < h, and outside
the conductor y > h . Assume that B,(—y) = —B,(y) because of its
symmetry.



II. Consider the case where the electric field varies with time. In this case, the electric
field and current density inside the conductor are not necessarily uniform. Both the
electric field and the magnetic flux density oscillate with an angular frequency w,and
these are given by E, = Re{Fexp(iwt)} and B, = Re{Bexp(iwt)} with complex
parameters £ and B. { is the imaginary unit.

1. Given the above electromagnetic properties of the conductor, Maxwell’s
equations inside the conductor contain the following two equations:

1 oFE .
wVXB-&5 =], (1)
VXE+2Z =0, )

where E, B, and j are the electric field, the magnetic flux density, and the
current density, respectively. Prove that the complex electric field £ satisfies
the following equation (3), based on equations (1) and (2). Asswme that the x
and y components of the electric field are zero, the y and z components of the
magnetic flux density are zero, 9E,/0x = dE,/dz =0,

and 9B,/0x = dB,/0z = 0.

d2E

ot (ottow? — iwpyd)E = 0. (3)

2. When the conductor is a metal and the conductivity is sufficiently high
(o > ew), equation (3) can be approximated as follows:

d2E |, o
i ia?E =0, 4)

1
where @ = (wyy0)z. Find a general solution to this differential equation.
3. Acurrent of 2hRe{j.exp(iwt)} per unit length in the x direction flows in the

conductor, where j. is a real constant. The complex electric field satisfies the

following equation.
b = .
J_, oEdy = 2hj. (5)

Assume that E(—y) = E(y) because of its symmetry. Find the solution to
equation (4) inside the conductor for these conditions. You can simplify the



solution, using cosh(f) = (exp(B) + exp(—f))/2 and
sinh(B) = (exp(B) — exp(—ﬁ)) /2, where f is a complex number.

4. Inside the conductor, the squares of the electric field amplitudes at the middle
(y = 0) and at the upper surface (y — h) are denoted by |E(0) |2 and |E (h)|2,
respectively.

(i) The angular frequency @ of the electric field is low (w — 0). Choose the
correct one from the following. Explain the reason.
a. [EO| «|Em|*
b |[EO]" ~ [E®)|’
c. |E@[* » |Ew)|?
(ii) The angular frequency @ of the electric field is high (w >

1
- uhz)‘ Choose
0

the correct one from the following. Explain the reason.
a. |EO)|" «|Em)
b. |EQ)|* = |EW)|”
c. [E@" » |E®)|*



Problem 3

Consider a perfect gas defined by the equation of state (1) and a Van der Waals gas
defined by the equation of state (2).

PV = nRT, (1)
{P +a (%)2} (V ~nb) = nRT. @)

Here, P, V, n, R and T are the pressure, the volume, the amount of substance
(number of moles), a gas constant and the thermodynamic temperature, respectively. Also,
@ and b are assumed to be constants. For a quasi-static process of these gases, the first
law of thermodynamics is expressed as

dU = TdS — PdV, 3)

where U and S are the internal energy and the entropy, respectively. Answer the
following questions. Note that the specific heat at constant volume Cy is assumed to be
constant and is expressed as

& =3, “@

I. Consider the following relations for both a perfect gas and a Van der Waals gas.
Using equation (3), (g%)'r is expressed as equation (5).

&), =7(G), —P 5)

Using equation (5) and a Maxwell relation of (g_i)r = (g—;

equation of state can be derived as expressed in equation (6) without using the entropy

) , a thermodynamic
v
S, which we cannot measure directly.

Uy _ (9P _

&)y =7, P ©

Find (%E)T for both a perfect gas and a Van der Waals gas.



II. Consider real gas effects during quasi-static expansions. A gas of a unit amount of
substance (1 mol), pressure Py, volume V,, and thermodynamic temperature T, is
inside a cylinder fitted with a piston as the initial condition. Assume that the system
is thermally isolated from the external environment. Answer the following questions.

1. The gas undergoes an adiabatic reversible expansion to a volume of 2V,
from V, by displacement of the piston as shown in Fig. 3.1. Find the
thermodynamic temperatures T and the entropy changes AS for both a perfect
gas and a Van der Waals gas after such an expansion.
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Figure 3.1

2. Next, consider that the gas in the cylinder is heated by a heater and is
reversibly expanded to a volume of 2V, from V, at the constant
thermodynamic temperature of Ty as shown in Fig. 3.2. Find the changes in the
internal energy and the entropy, AU and AS, for both a perfect gas and a Van
der Waals gas after such an expansion. Also, explain the reason for the

difference of the change in the internal energy AU between a perfect gas and a
Van der Waals gas.
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III. Chamber A of volume V, and Chamber B of volume V;, are connected by a valve
as shown in Fig. 3.3. At the initial condition, a perfect gas with pressure P, volume
Vo, and thermodynamic temperature T is in Chamber A. The gas consists of a unit
amount of substance (1 mol). Chamber B is evacuated. Consider expansion of the gas
in Chamber A by opening the valve. Answer the following questions, assuming that
the system is thermally isolated from the external environment.

<

Valve
Chamber A Chamber B

Figure 3.3

1. Find the thermodynamic function (quantity of state) which remains constant
during this process.

2. Find the thermodynamic temperature T and the entropy change AS after
such an expansion.

3. Explain about the irreversibility of this process, with reasoning.
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Problem 4

Arod of length L is fixed at both ends by support A and support B as shown in
Fig. 4.1. Assume that moments are not applied at both ends of the rods.

Figure 4.1

I. Consider the bending deformation of the rod when a distributed load g(x) per unit
length is applied to the rod in the y direction. Assume that the deformation of the rod
is infinitesimally small, and consider only displacement in the y direction (the
downward direction is positive as shown in Fig. 4.2). The mass of the rod is negligible.
Answer the following questions.
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Figure 4.2
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1. Consider an element of the rod at any position x. Assume that the force F
and the moment M act on the cross section of the rod to maintain static
equilibrium as shown in Fig. 4.2.

(1) Show that equation (1) holds true between the force F and the
distributed load g(x) in this case.

= = —q(). (1)

(if) Show that equation (2) holds true between the moment M and the
force F in this case.

an _

2 =F. )

2. 'When the deformation of the rod is infinitesimally small, it is assumed that
the rod is deformed only by the moment M. In this case, equation (3) holds true
between the displacement y, and the moment M. Here, R is assumed to be a
constant. When the distributed load q(x) =k is applied (k is a constant),

derive the maximum displacement of the rod. Here, assume that ¥ = 0 at both
ends of the rod.

RYY = _p, 3)

dx2
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II. Next, consider the bending vibration of the rod shown in Fig. 4.1. Here, consider
about free vibration. Assume that the rod is uniform, the density of the rod is p, and
the cross sectional area is S. Also, assume that the deformation of the rod is
infinitesimally small, and consider only motion in the y direction. Gravitational
forces are negligible. Answer the following questions.

1. Consider the motion of an element of the rod as shown in Fig. 4.3. By
considering the equation of motion of the element in the figure, and by using
equations (2) and (3), show that the equation of motion of the bending vibration
of the rod in the y direction is expressed as equation (4). Assume that the
element moves only in the y direction, and that the force in the x direction
and the rotation by the moment are negligible. |
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2. Assume that the solution of equation (4) obtained in Question I1. 1 is
y(x,t) = X(x)exp(iwt), where i is the imaginary unit. Show that the general

pSw?

solution X(x) of equation (4) is expressed by equation (5). Here, u* = =

and C;~C, are constants. Also, exp(ix) = cosx -+ isinx,
sinhx = (exp(x) — exp(—x))/2, and coshx = (exp(x) + exp(—x))/2.

X(x) = Cy sin ux + C, cos ux + C; sinh ux + C, cosh ux. (5)

3. In the case when the rod is fixed at both ends similar to Fig. 4.1, y =0 at
both ends of the rod.
(1) Obtain the possible values of u using equation (5).
(i1} Explain the behavior of the bending vibration based on the result of
Question II. 3. (i).
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No correction in the English version.
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Problem2 1II.2. Line1-2  (Page 6)

(ncorrect)... the conductivity is sufficiently high (o > sw),

(correct)... the conductivity is sufficiently high (¢ > g,w),
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