

2014 年 11 月 7 日 国立大学法人 東京大学大学院工学系研究科 次世代宇宙システム技術研究組合

超小型衛星「ほどよし1号機」打ち上げに成功

国立大学法人東京大学大学院工学系研究科(研究科長:光石 衛)航空宇宙工学専攻 中須賀真一教授の研究室は、昨年度まで行われた内閣府最先端研究開発支援プログラムの一環で次世代宇宙システム技術研究組合が株式会社アクセルスペースの技術支援のもとに開発した超小型衛星「ほどよし1号機」を、ロシアのドニエプルロケット(注1)を使ってロシア国内のヤスネ宇宙基地から2014年11月6日07:35(UTC)(日本時間6日16:35)に打ち上げ、最初の日本上空通過時(日本時間同日20:50頃)に信号の受信に成功しました。初期運用は順調に推移しております。

【「ほどよし1号機」概要】

「ほどよし1号機」は地球観測(リモートセンシング)を目的とした1辺約50cmの立方体 形状をした質量60kgの超小型衛星です。本衛星の打ち上げ後に取得が期待される画像を利 用して、将来的に超小型衛星を利用したリモートセンシング事業に取り組む潜在的な事業 者の掘り起こしをおこない、事業化に関する利用研究を進めることを目的としています。

「ほどよし1号機」にはコンピュータ、リアクションホイール(注 2)、スターセンサ(注 3)、MEMS ジャイロ(注 4)、GPS 受信機などが搭載され、高度な 3 軸姿勢制御を行うほか、過酸化水素水を推進剤とする推進装置を使って軌道制御も行います。また、地上分解能 6.7m、観測幅約 28km の光学センサが搭載され、高度 500km-600km の太陽同期軌道から地球を観測します。従来このような分解能と観測幅の地球観測には 150kg 以上の衛星が使われてきましたが、最新の民生電子部品の積極的な活用等により本衛星では 60kg 以下の質量で同等の機能を実現します。

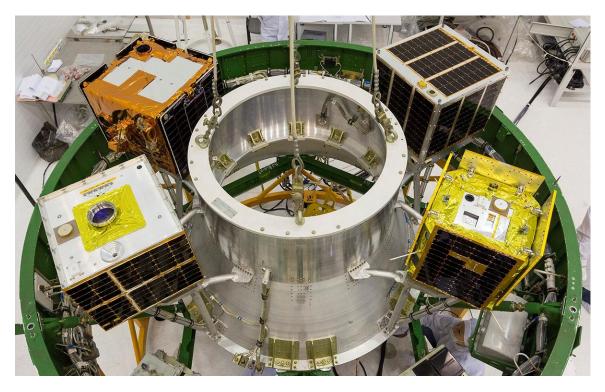
リーズナブルなコストや信頼度で世界をリードする超小型衛星を利用や打ち上げを含めて開発する、通称「ほどよしプログラム」では全部で4機の衛星の開発を行っており、2014年6月に「ほどよし3号機」「ほどよし4号機」が先に打ち上げられています。

「ほどよし3,4号機」のプレスリリース

http://www.t.u-tokyo.ac.jp/pdf/2014/20140619_nakasuka.pdf

http://www.t.u-tokyo.ac.jp/epage/release/2014/2014061701.html

【「ほどよし1号機」主要諸元】


1.19CC2.01.13 TX 18707	
ミッション系性能	
撮影方式	プッシュブルーム方式
地上分解能	6. 7m
バンド	B (450-520nm), G (520-600nm),
	R(630-690nm), NIR(780-890nm)
信号ノイズ比	B(153), G(178), R(235), NIR(167)
観測幅	27. 8km
最大連続撮影距離	179km
ビット深度	12bit
軌道	
軌道種類	太陽同期軌道
衛星バス系	
サイズ	503 x 524 x 524mm
	(突起部含まず)
質量	60kg
ダウンリンクレート	10-20Mbps
発生電力	50W
姿勢制御方式	3 軸制御(地球指向)

【写真】

ドニエプルロケットに搭載された「ほどよし1号機」

ドニエプルロケットに搭載された「ほどよし1号機」(右上)

【本件に関する問合せ先】 中須賀 真一(なかすか しんいち) 東京大学大学院工学系研究科 航空宇宙工学専攻 教授

里形 玲子(さとがた れいこ) 次世代宇宙システム技術研究組合 総務担当

桜井 知佳子(さくらい ちかこ) 株式会社アクセルスペース 広報担当

用語解説

(注1) **ドニエプルロケット**: ロシアの戦略ミサイル SS18 を平和転用したもので、1999 年の初号機の打ち上げ以来、20 回の打ち上げのうち 19 回が成功しています。 また、高精度の軌道投入、多数のクラスター打ち上げの実績を持ち、高い信頼 性があります。同ロケットは宇宙航空研究開発機構 (JAXA) の OICETS や宇宙 科学研究所 (ISAS) の INDEX を含め、これまでに多数の衛星を打ち上げてきま した。

> 詳細情報やロケット関連の写真は以下のホームページに掲載しています。 http://park.itc.u-tokyo.ac.jp/nsat/release/120516.html

- (注2) **リアクションホイール**:こまのように回転する力を利用して、衛星の姿勢を制御するための装置。
- (注3) スターセンサ:恒星の写真を撮り、スターカタログという恒星のデータベース と比較することで衛星の姿勢情報を把握するために使用するセンサ
- (注4) MEMS ジャイロ: 衛星の回転速度を測定するために使われるセンサであるジャイロスコープのうち、半導体技術を用いて小型で低消費電力にしたもの。MEMS とは Micro Electro Mechanical Systems の略。