Contents

1. Message from the Dean 1
2. Chronology 2
3. Organization 3
4. Number of Faculty and Staff Members 17
5. Numbers of Students 18
6. International Exchange 21
7. Research Activities 25
8. Finances 28
9. Public Relations and Information ... 29
1. Message from the Dean

Engineering includes an extensive academic system that reaches from issues of basic science to challenges spanning overall science and technology as well as the whole of society. Today’s society has been realized by advances in science and technology. Yet, the challenges of modern society are complicated, and involve many fields. For example, issues such as energy, environment, resources, water, food and so on are entwined and have complex aspects. Therefore, using technology to control one system too often holds undesired consequences for other systems. Currently, innovation is required in a variety of fields.

The School of Engineering at the University of Tokyo consists of 18 graduate departments, 16 undergraduate departments, and 10 affiliated facilities (2 institutes, 8 centers), has over 500 faculty members and is engaged in education and research around the clock. Around 2,000 undergraduate degree students, 2,000 master’s degree students and 1,000 doctoral degree students study engineering and conduct research. The School of Engineering consists of diverse and varied fields ranging from those that lead the development and deepening of basic science, to those that strengthen industry and lead innovation, in addition to those that open up new multidisciplinary, cross-disciplinary, and interdisciplinary fields. In addition to promoting outstanding research around the world in a wide range of fields, from fundamental to applied, we produce talented individuals with a variety of high expertise and broad perspectives.

A variety of benchmarks place the research promoted by the School of Engineering as being globally ranked at the top. By further developing such research, the School of Engineering aims to be the core for promoting innovation that breaks through the difficulties challenging modern society.

In graduate school education, along with adopting Global COE Program and Program for Leading Graduate Schools conclusions and advancing the understanding of basic and specialized fields, we enrich programs that cultivate strong leadership, task setting, resolution and performance capabilities, a strong sense of ethics and communication skills. In addition, we promote the Bilingual Campus Initiative, strengthen overseas posts for students and the acceptance of international students, and promote the training of talented individuals who are capable of working around the globe.

Through the various social contributions this research and education will make, the School of Engineering plays a significant role in pioneering a future society. Therefore, we are developing the management and operation systems necessary to realize this.

The School of Engineering, along with you, will be at the forefront of opening up the future.

Dean of the School of Engineering, The University of Tokyo
Tatsuya Okubo
2. Chronology

(1) Chronology

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1886</td>
<td>March</td>
<td>Teikoku Daigaku (Imperial University) established. Kobu Daigakko merged with the Faculty of Technology, University of Tokyo, to form the Technical College with 7 engineering departments.</td>
</tr>
<tr>
<td>1897</td>
<td>June</td>
<td>Imperial University renamed Tokyo Imperial University.</td>
</tr>
<tr>
<td>1919</td>
<td>February</td>
<td>Technical College became Faculty of Engineering.</td>
</tr>
<tr>
<td>1939</td>
<td>October</td>
<td>Engineering Research Institute established.</td>
</tr>
<tr>
<td>1942</td>
<td>April</td>
<td>Facilities in Hongo renamed First Faculty of Engineering. Second Faculty of Engineering established in the City of Chiba.</td>
</tr>
<tr>
<td>1947</td>
<td>October</td>
<td>Tokyo Imperial University renamed The University of Tokyo.</td>
</tr>
<tr>
<td>1951</td>
<td>February</td>
<td>Branch School of the Faculty of Engineering established.</td>
</tr>
<tr>
<td>1951</td>
<td>March</td>
<td>Second Faculty of Engineering abolished.</td>
</tr>
<tr>
<td>1953</td>
<td>April</td>
<td>Graduate Schools established under the new educational system.</td>
</tr>
<tr>
<td>1954</td>
<td>March</td>
<td>Branch School of the Faculty of Engineering abolished.</td>
</tr>
<tr>
<td>1955</td>
<td>April</td>
<td>Graduate School of Engineering established.</td>
</tr>
<tr>
<td>1967</td>
<td>June</td>
<td>Nuclear Engineering Research Laboratory established.</td>
</tr>
<tr>
<td>1975</td>
<td>April</td>
<td>Faculty of Engineering began admitting graduates from technical junior colleges.</td>
</tr>
<tr>
<td>1981</td>
<td>April</td>
<td>Institute of Interdisciplinary Research established.</td>
</tr>
<tr>
<td>1983</td>
<td>March</td>
<td>Institute of Interdisciplinary Research abolished.</td>
</tr>
<tr>
<td>1988</td>
<td>March</td>
<td>Institute of Interdisciplinary Research abolished.</td>
</tr>
<tr>
<td>1995</td>
<td>April</td>
<td>Reinforcement of the Graduate School of Engineering completed.</td>
</tr>
<tr>
<td>2000</td>
<td>April</td>
<td>Research Center for Water Environment Technology established.</td>
</tr>
<tr>
<td>2001</td>
<td>April</td>
<td>Research into Artifacts, Center for Engineering established.</td>
</tr>
<tr>
<td>2004</td>
<td>March</td>
<td>Engineering Research Institute abolished.</td>
</tr>
<tr>
<td>2005</td>
<td>March</td>
<td>Nuclear Engineering Research Laboratory abolished.</td>
</tr>
<tr>
<td>2008</td>
<td>April</td>
<td>Frontier Research Center for Energy and Resources established. Department of Electrical and Electronic Engineering, Department of Electrical Engineering and Information Systems and Department of Systems Innovation established. (17 undergraduate departments, 19 departments)</td>
</tr>
<tr>
<td>2009</td>
<td>April</td>
<td>Department of Mechanical Engineering established. (16 undergraduate departments, 18 departments)</td>
</tr>
<tr>
<td>2010</td>
<td>April</td>
<td>Photon Science Center established.</td>
</tr>
<tr>
<td>2011</td>
<td>April</td>
<td>Center for Innovation of Engineering Education abolished. Institute for Innovation in International Engineering Education established.</td>
</tr>
<tr>
<td>2012</td>
<td>April</td>
<td>Medical Device Development and Regulation Research Center established.</td>
</tr>
<tr>
<td>2013</td>
<td>April</td>
<td>Resilience Engineering Research Center established.</td>
</tr>
<tr>
<td>2016</td>
<td>April</td>
<td>Center for Spintronics Research Network established.</td>
</tr>
<tr>
<td>2019</td>
<td>April</td>
<td>Research into Artifacts, Center for Engineering established.</td>
</tr>
<tr>
<td>2019</td>
<td>July</td>
<td>Research Center for Water Environment Technology reorganized.</td>
</tr>
</tbody>
</table>

(2) List of Deans

<table>
<thead>
<tr>
<th>Order of Succession</th>
<th>Name</th>
<th>Tenure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Koui Furuichi</td>
<td>1886.5.1 - 1888.11.27</td>
</tr>
<tr>
<td>2</td>
<td>Hiromoto Watanabe</td>
<td>1888.11.28 - 1889.10.10</td>
</tr>
<tr>
<td>3</td>
<td>Koui Furuichi</td>
<td>1889.10.11 - 1898.7.18</td>
</tr>
<tr>
<td>4</td>
<td>Kingo Tatsuno</td>
<td>1898.7.19 - 1902.12.28</td>
</tr>
<tr>
<td>5</td>
<td>Wataru Watanabe</td>
<td>1902.12.29 - 1918.11.25</td>
</tr>
<tr>
<td>6</td>
<td>Seichi Terano</td>
<td>1918.11.26 - 1920.6.30</td>
</tr>
<tr>
<td>7</td>
<td>Yasushi Tsukamoto</td>
<td>1920.7.1 - 1923.7.5</td>
</tr>
<tr>
<td>8</td>
<td>Kunichi Tawara</td>
<td>1923.7.6 - 1926.7.9</td>
</tr>
<tr>
<td>9</td>
<td>Yasushi Tsukamoto</td>
<td>1926.7.10 - 1929.3.31</td>
</tr>
<tr>
<td>10</td>
<td>Motoji Shibusawa</td>
<td>1929.4.1 - 1932.3.30</td>
</tr>
<tr>
<td>11</td>
<td>Yoshio Tanaka</td>
<td>1932.3.31 - 1935.3.31</td>
</tr>
<tr>
<td>12</td>
<td>Jo Hiroga</td>
<td>1935.4.1 - 1938.3.31</td>
</tr>
<tr>
<td>13</td>
<td>Shigetaro Niwa</td>
<td>1938.4.1 - 1941.3.31</td>
</tr>
<tr>
<td>14</td>
<td>Yoshizo Uchida</td>
<td>1941.4.1 - 1943.3.31</td>
</tr>
<tr>
<td>15</td>
<td>Shoji Seto</td>
<td>1942.4.18 - 1945.3.31</td>
</tr>
<tr>
<td>16</td>
<td>Hidenosuke Sano</td>
<td>1943.3.12 - 1946.3.11</td>
</tr>
<tr>
<td>17</td>
<td>Tszune Inokuchi</td>
<td>1945.4.1 - 1948.3.31</td>
</tr>
<tr>
<td>18</td>
<td>Naoto Kameyama</td>
<td>1946.3.12 - 1949.3.31</td>
</tr>
<tr>
<td>19</td>
<td>Matsujiro Oyama</td>
<td>1949.3.12 - 1952.3.11</td>
</tr>
<tr>
<td>20</td>
<td>Hidesaburo Aoyama</td>
<td>1952.3.12 - 1954.3.30</td>
</tr>
<tr>
<td>21</td>
<td>Fujio Nakahara</td>
<td>1954.3.31 - 1956.3.31</td>
</tr>
<tr>
<td>22</td>
<td>Masao Yamagata</td>
<td>1956.4.1 - 1958.3.30</td>
</tr>
<tr>
<td>23</td>
<td>Itsaku Koga</td>
<td>1958.3.31 - 1960.3.30</td>
</tr>
<tr>
<td>24</td>
<td>Kyoshi Muto</td>
<td>1960.3.31 - 1962.3.30</td>
</tr>
<tr>
<td>25</td>
<td>Masao Yoshiki</td>
<td>1962.3.31 - 1964.3.30</td>
</tr>
<tr>
<td>26</td>
<td>Toshifusa Sakamoto</td>
<td>1964.3.31 - 1966.3.30</td>
</tr>
<tr>
<td>27</td>
<td>Takeo Naka</td>
<td>1966.3.31 - 1968.3.31</td>
</tr>
<tr>
<td>28</td>
<td>Takeo Mogami</td>
<td>1968.4.1 - 1968.11.4</td>
</tr>
<tr>
<td>29</td>
<td>Takashi Mukaiho</td>
<td>1968.11.5 - 1969.3.31</td>
</tr>
<tr>
<td>30</td>
<td>Hiroshi Kihara</td>
<td>1969.4.1 - 1971.3.31</td>
</tr>
<tr>
<td>31</td>
<td>Takeshi Sugeno</td>
<td>1971.4.1 - 1973.3.31</td>
</tr>
<tr>
<td>32</td>
<td>Sogo Okamura</td>
<td>1973.4.1 - 1975.3.31</td>
</tr>
<tr>
<td>33</td>
<td>Jiro Kondo</td>
<td>1975.4.1 - 1977.3.31</td>
</tr>
<tr>
<td>34</td>
<td>Hajime Umemura</td>
<td>1977.4.1 - 1978.4.1</td>
</tr>
<tr>
<td>35</td>
<td>Sumiji Fujii</td>
<td>1978.4.2 - 1980.4.1</td>
</tr>
<tr>
<td>36</td>
<td>Yoshishiro Hisamatsu</td>
<td>1980.4.2 - 1982.4.1</td>
</tr>
<tr>
<td>37</td>
<td>Jinichi Nagumo</td>
<td>1982.4.2 - 1984.4.1</td>
</tr>
<tr>
<td>38</td>
<td>Kyoshi Honkawa</td>
<td>1984.4.2 - 1986.4.1</td>
</tr>
<tr>
<td>39</td>
<td>Hiroshi Inose</td>
<td>1986.4.2 - 1987.3.31</td>
</tr>
<tr>
<td>40</td>
<td>Masao Inoue</td>
<td>1987.4.1 - 1989.3.31</td>
</tr>
<tr>
<td>41</td>
<td>Hiroshi Yoshikawa</td>
<td>1989.6.1 - 1991.3.31</td>
</tr>
<tr>
<td>42</td>
<td>Takuo Sugano</td>
<td>1991.4.1 - 1992.3.31</td>
</tr>
<tr>
<td>43</td>
<td>Hiroyu Okamura</td>
<td>1992.4.1 - 1994.3.31</td>
</tr>
<tr>
<td>44</td>
<td>Youichi Goshi</td>
<td>1994.4.1 - 1996.3.31</td>
</tr>
<tr>
<td>45</td>
<td>Hajime Okamura</td>
<td>1996.4.1 - 1998.3.31</td>
</tr>
<tr>
<td>46</td>
<td>Naomasa Nakajima</td>
<td>1998.4.1 - 2000.3.31</td>
</tr>
<tr>
<td>47</td>
<td>Hiroshi Komiyama</td>
<td>2000.4.1 - 2002.3.31</td>
</tr>
<tr>
<td>48</td>
<td>Shinichiro Ogaki</td>
<td>2002.4.1 - 2004.3.31</td>
</tr>
<tr>
<td>49</td>
<td>Kimihiko Hira</td>
<td>2004.4.1 - 2006.3.31</td>
</tr>
<tr>
<td>50</td>
<td>Yoichiro Matsumoto</td>
<td>2006.4.1 - 2008.3.31</td>
</tr>
<tr>
<td>51</td>
<td>Kazuo Hotate</td>
<td>2008.4.1 - 2010.3.31</td>
</tr>
<tr>
<td>52</td>
<td>Takeshi Kitamori</td>
<td>2010.4.1 - 2012.3.31</td>
</tr>
<tr>
<td>53</td>
<td>Noboru Harata</td>
<td>2012.4.1 - 2014.3.31</td>
</tr>
<tr>
<td>54</td>
<td>Mamoru Mitsuishi</td>
<td>2014.4.1 - 2017.3.31</td>
</tr>
<tr>
<td>55</td>
<td>Tatsuya Okubo</td>
<td>2017.4.1 -</td>
</tr>
</tbody>
</table>
3. Organization

(1) Organizational Chart

[Diagram of organizational structure with committees and departments listed]

[Committees]
- Committee on Finance
- Committee on Student Affairs
- Education Review Committee
- Library Committee
- Safety Committee
- Information Systems Committee
- International Exchange Committee
- Gender Equality Committee

(Undergraduate Departments)
- Department of Civil Engineering
- Department of Architecture
- Department of Urban Engineering
- Department of Mechanical Engineering
- Department of Mechano-Informatics
- Department of Aeronautics and Astronautics
- Department of Precision Engineering
- Department of Information and Communication Engineering
- Department of Electrical and Electronic Engineering
- Department of Applied Physics
- Department of Mathematical Engineering and Information Physics
- Department of Materials Engineering
- Department of Applied Chemistry
- Department of Chemical System Engineering
- Department of Chemistry and Biotechnology
- Department of Systems Innovation
 16 Departments Total

(Graduate Departments)
- Department of Civil Engineering
- Department of Architecture
- Department of Urban Engineering
- Department of Mechanical Engineering
- Department of Precision Engineering
- Department of Systems Innovation
- Department of Aeronautics and Astronautics
- Department of Electrical Engineering and Information Systems
- Department of Applied Physics
- Department of Materials Engineering
- Department of Applied Chemistry
- Department of Chemical System Engineering
- Department of Chemistry and Biotechnology
- Department of Advanced Interdisciplinary Studies
- Department of Nuclear Engineering and Management
- Department of Bioengineering
- Department of Technology Management for Innovation
- Nuclear Professional School
 18 Departments Total

[Departmental Institutes]
- Research Center for Water Environment Technology
- Quantum-Phase Electronics Center
- Institute of Engineering Innovation
- Frontier Research Center for Energy and Resources
- Photon Science Center
- Institute for Innovation in International Engineering Education
- Medical Device Development and Regulation Research Center
- Resilience Engineering Research Center
- Center for Spintronics Research Network
- Research into Artifacts, Center for Engineering
- Center for Global Education
- Center for Engineering Fundamentals
- Center for International Affairs
- Center for Interdisciplinary Research and Education Collaboration
- Center for Project-Oriented Engineering
Dean and Officers (for Academic Year 2019)

<table>
<thead>
<tr>
<th>Dean of the School of Engineering</th>
<th>Tatsuya Okubo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vice Deans</td>
<td></td>
</tr>
<tr>
<td>Akira Furusawa</td>
<td></td>
</tr>
<tr>
<td>Yasushi Asami</td>
<td></td>
</tr>
<tr>
<td>Hitoshi Aida</td>
<td></td>
</tr>
<tr>
<td>General Manager</td>
<td>Takashi Mitomo</td>
</tr>
<tr>
<td>Special Advisors to the Dean</td>
<td></td>
</tr>
<tr>
<td>Yukihiro Shimogaki</td>
<td></td>
</tr>
<tr>
<td>Hiroyuki Takahashi</td>
<td></td>
</tr>
<tr>
<td>Takao Someya</td>
<td></td>
</tr>
<tr>
<td>Yuji Suzuki</td>
<td></td>
</tr>
<tr>
<td>Graduate Department Chairs</td>
<td></td>
</tr>
<tr>
<td>Department of Civil Engineering</td>
<td>Eiji Hato</td>
</tr>
<tr>
<td>Department of Architecture</td>
<td>Koichi Kato</td>
</tr>
<tr>
<td>Department of Urban Engineering</td>
<td>Makoto Yokohari</td>
</tr>
<tr>
<td>Department of Mechanical Engineering</td>
<td>Shu Takagi</td>
</tr>
<tr>
<td>Department of Precision Engineering</td>
<td>Yasuhiko Jimbo</td>
</tr>
<tr>
<td>Department of Systems Innovation</td>
<td>Kiyoshi Izumi</td>
</tr>
<tr>
<td>Department of Aeronautics and Astronautics</td>
<td>Mitsuhiro Tsue</td>
</tr>
<tr>
<td>Department of Electrical Engineering and Information Systems</td>
<td>Nobuaki Minematsu</td>
</tr>
<tr>
<td>Department of Applied Physics</td>
<td>Ryotaro Arita</td>
</tr>
<tr>
<td>Department of Materials Engineering</td>
<td>Takanori Ichiki</td>
</tr>
<tr>
<td>Department of Applied Chemistry</td>
<td>Hiroyuki Noji</td>
</tr>
<tr>
<td>Department of Chemical System Engine</td>
<td>Atsuo Yamada</td>
</tr>
<tr>
<td>Department of Chemistry and Biotechnology</td>
<td>Tsutomu Suzuki</td>
</tr>
<tr>
<td>Department of Advanced Interdisciplinary Studies</td>
<td>Kazuyuki Motohashi</td>
</tr>
<tr>
<td>Department of Nuclear Engineering and Management</td>
<td>Naoto Kasahara</td>
</tr>
<tr>
<td>Department of Bioengineering</td>
<td>Hitoshi Tabata</td>
</tr>
<tr>
<td>Department of Technology Management for Innovation</td>
<td>Kazuo Furuta</td>
</tr>
<tr>
<td>Nuclear Professional School</td>
<td>Shuichi Hasegawa</td>
</tr>
<tr>
<td>Undergraduate Department Chairs</td>
<td></td>
</tr>
<tr>
<td>Department of Civil Engineering</td>
<td>Eiji Hato</td>
</tr>
<tr>
<td>Department of Architecture</td>
<td>Koichi Kato</td>
</tr>
<tr>
<td>Department of Urban Engineering</td>
<td>Makoto Yokohari</td>
</tr>
<tr>
<td>Department of Mechanical Engineering</td>
<td>Junichiro Shiomii</td>
</tr>
<tr>
<td>Department of Mechanono-Informatics</td>
<td>Kei Okada</td>
</tr>
<tr>
<td>Department of Aeronautics and Astronautics</td>
<td>Mitsuhiro Tsue</td>
</tr>
<tr>
<td>Department of Precision Engineering</td>
<td>Yasuhiko Jimbo</td>
</tr>
<tr>
<td>Department of Information and Communication Engineering</td>
<td>Nobuaki Minematsu</td>
</tr>
<tr>
<td>Department of Electrical and Electronic Engineering</td>
<td>Akihiko Yokoyama</td>
</tr>
<tr>
<td>Department of Applied Physics</td>
<td>Ryotaro Arita</td>
</tr>
<tr>
<td>Department of Mathematical Engineering and Information Physics</td>
<td>Takaaki Nara</td>
</tr>
<tr>
<td>Department of Materials Engineering</td>
<td>Takanori Ichiki</td>
</tr>
<tr>
<td>Department of Applied Chemistry</td>
<td>Hiroyuki Noji</td>
</tr>
<tr>
<td>Department of Chemical System Engineering</td>
<td>Atsuo Yamada</td>
</tr>
<tr>
<td>Department of Chemistry and Biotechnology</td>
<td>Tsutomu Suzuki</td>
</tr>
<tr>
<td>Department of Systems Innovation</td>
<td>Hajime Yamaguchi</td>
</tr>
</tbody>
</table>

Directors of Departmental Institutes

<table>
<thead>
<tr>
<th>Institute</th>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Center for Water Environment Technology</td>
<td>Satoshi Takizawa</td>
</tr>
<tr>
<td>Quantum-Phase Electronics Center</td>
<td>Yoshihiro Iwasa</td>
</tr>
<tr>
<td>Institute of Engineering Innovation</td>
<td>Naoya Shibata</td>
</tr>
<tr>
<td>Frontier Research Center for Energy and Resources</td>
<td>Yasuhiro Kato</td>
</tr>
<tr>
<td>Photon Science Center</td>
<td>Masato Koashi</td>
</tr>
<tr>
<td>Institute for Innovation in International Engineering Education</td>
<td>Yasushi Asami</td>
</tr>
<tr>
<td>Medical Device Development and Regulation Research Center</td>
<td>Kouhei Tsumoto</td>
</tr>
<tr>
<td>Resilience Engineering Research Center</td>
<td>Kazuo Furuta</td>
</tr>
<tr>
<td>Center for Spintronics Research Network</td>
<td>Masaaki Tanaka</td>
</tr>
<tr>
<td>Research into Artifacts, Center for Engineering</td>
<td>Hajime Asama</td>
</tr>
</tbody>
</table>

Administrative Division

<table>
<thead>
<tr>
<th>Division</th>
<th>Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Manager</td>
<td>Takashi Mitomo</td>
</tr>
<tr>
<td>Manager, Student Affairs Group</td>
<td>Noriko Nakamaru</td>
</tr>
<tr>
<td>Manager, Center for International Affairs</td>
<td>Takeshi Sekiguchi</td>
</tr>
<tr>
<td>Manager, Information Library Group</td>
<td>Sakurako Ichimura</td>
</tr>
<tr>
<td>Manager, General Affairs Department</td>
<td>Yuji Hirano</td>
</tr>
<tr>
<td>Manager, Finance Department</td>
<td>Masao Yokota</td>
</tr>
</tbody>
</table>
(3) Graduate Departments

Department of Civil Engineering

The Department of Civil Engineering develops specialists who are able to lead with a broad, international perspective that integrates history, nature, and culture. Civil engineering operations encompass topics such as transportation, the environment, cities, disaster prevention, landscapes, information, and energy. Specialists from this department will lead in fields such as design, technological strategy, and policy/planning. Moreover, the Department aims to contribute to sustainable development worldwide (as well as within Japan) by pursuing improved civil engineering, conducting advanced research to systematize and innovate, and utilizing research results for educational and societal benefits. The Department also works to provide deep insights into civil engineering’s influence on international and local communities.

Department of Architecture

The Department of Architecture is committed to building new approaches to learning and aims to create spaces and environments suitable for maturing societies in a new age. This is achieved by integrating wide-ranging knowledge: from scientific, engineering, and technological fields to the humanities, social, and artistic domains. The Department aims to develop specialists who can shoulder the responsibilities of architecture-related research, development, planning, design, production, management, and policy recommendations. Moreover, contributions to sustainability and societal growth are of the utmost importance; as such, the Department addresses the challenges of research geared toward creation of new value and global technological innovations.

Department of Urban Engineering

The Department of Urban Engineering develops experts with demonstrable, real-world applicable knowledge in urban planning, urban design, urban transportation planning, urban analysis, urban environmental engineering, urban water systems, international urban environments, environmental design, urban management, and more. Moreover, the Department aims to contribute to sound, sustainable development of national land and local communities from a global viewpoint while maintaining consideration for the diversity of local climates and social cultures.

Department of Mechanical Engineering

The Department of Mechanical Engineering is tasked with promoting research and education in a range of fields, including the four fundamental disciplines of mechanical engineering: mechanical dynamics, material mechanics, fluid dynamics, and thermodynamics. Moreover, the work of the Department encompasses these fundamentals’ fields of application, which include: the environment and energy, biomedical design and production, and system engineering. By providing educational programs based on research activities in both basic and applied fields in the domain of advanced science, the Department aims to develop engineers and researchers who can further develop global civilization and culture while contributing to the creation of a safe society, ensuring healthy and fulfilling lives for people.
Department of Precision Engineering

Robot technology (RT) and production technology (PT) are driving forces that can change the future. The two have seen significant developments and have become deeply intertwined technological fields that are paving the way in precision engineering. At the Department of Precision Engineering, students are provided with specialized education (from fundamental knowledge to real application). The wide range of research topics for investigation includes (but is not limited to): 1) use of advanced devices for production technologies and biomedical equipment development, and 2) use of AI and machine learning for robot development and system design. Research also covers real-world implementation.

Department of Systems Innovation

The words “systems innovation” contain the Department’s aspiration of establishing a new academic system that helps to create an innovative system in which a variety of individual elements are integrated. In modern society, it is difficult to solve problems by coming up with the most appropriate system from scratch. It is essential to analyze and understand existing systems, and then to design an integrated system by adding new systems to them. The Department of Systems Innovation provides students with technical and interdisciplinary knowledge on engineering technology related to networking for artifacts, global circulation systems, socioeconomic systems, and designs of advanced knowledge. The Department also offers students opportunities to learn concrete solutions from experience through various seminars.

Department of Aeronautics and Astronautics

The Department of Aeronautics and Astronautics pursues both the conspicuous and the unrealized significance and possibilities in the worlds of aeronautics and astronautics, conducting research and providing education such that discoveries can be proactively applied for the well-being of humanity. Moreover, the Department aims to create a new field of engineering and to develop leading-edge technologies and knowledge that can be applied to other disciplines. To this end, the Department will foster system integration for missions in aerospace and promote practical research and education. Through such activities, the Department aims to develop leaders in the fields of aeronautics and astronautics and contribute to societal progress.

Department of Electrical Engineering and Information Systems

The Department of Electrical Engineering and Information Systems aims to create and develop a new discipline that melds aspects of physics (with concentration on electromagnetism and quantum physics) with aspects of information science. This goal is pursued by providing research and education related to energy, the environment & aerospace, nanophysics & devices, and information & communications. Technologies such as brain-like LSI and highly advanced sensing devices are core technologies for space exploration, electric vehicle development, increasing capacities for electricity transport, AI & IoT, and self-driving cars. Students research the design and control of this invisible world of electronics and information. The Department aims to develop the next generation of unique leaders—individuals of international caliber with originality, advanced expertise, and an ability to take a broad view.
Department of Applied Physics

People who understand the fundamentals of science and are driven to take on the challenges of solving new problems are in demand in every discipline. The Department of Applied Physics is committed to developing world leaders who can apply their expertise in physics, think independently, and venture into unexplored fields. Moreover, the Department aims to research advanced topics in the field of physics and make use of the results for society and industry.

Department of Materials Engineering

The Department of Materials Engineering aims to lead research in unexplored fields of materials engineering, which fundamentally supports the lives of people everywhere. Our goal is to make breakthroughs in the materials field to help solve the issues and difficult problems faced by modern society regarding the environment, energy, information & communication, and medical care, thereby eventually contributing to the sustainable development and well-being of humanity. The Department is developing international-caliber, next generation leaders who have unique ideas by providing students with opportunities to gain highly advanced knowledge in the field, all while fostering world-leading research and development in addition to fundamental knowledge of materials.

Department of Applied Chemistry

The Department of Applied Chemistry's ultimate goal is to contribute to the sustainable development of humanity and the global environment through the creation of new chemistry-based fields and technologies. While promoting world-leading research, the Department aims to develop specialists who have wide-ranging knowledge of fundamentals, advanced expertise in applied chemistry, and can lead R&D in a variety of fields.

Department of Chemical System Engineering

The Department of Chemical System Engineering develops chemical engineers and researchers through education on chemical system engineering methodologies, focusing on (1) the analysis and control of chemical phenomena on various scales (from molecular to global), and on (2) the design and systemization of their compositional elements. Moreover, using these methodologies, the Department aims to contribute to the creation of a sustainable society by promoting research that targets solutions to issues related to the environment, energy, medical care, and the safety and security of society.
Department of Chemistry and Biotechnology

The Department of Chemistry and Biotechnology develops professionals who, by specializing in a wide range of fields such as organic chemistry, polymer chemistry, bioscience, and molecular biology, can create new fields by integrating chemistry and life sciences. Moreover, the Department aims to develop technologies that can make major contributions to society through the use of chemistry and biology by producing beneficial chemical reactions, elucidating life phenomena, and improving biological systems.

Department of Advanced Interdisciplinary Studies

The Department of Advanced Interdisciplinary Studies provides education and research guidance on fundamental and applied research (both emerging and world-leading) in a range of fields relating to advanced scientific technology, including social science and barrier-free social systems. The Department also provides graduate courses for mature students who are in full-time employment. Through its courses for graduate education and research, the Department aims to develop not only unique and creative researchers in the advanced scientific fields but also specialists in international research, business management, and advanced interdisciplinary policymaking.

Department of Nuclear Engineering and Management

The Department of Nuclear Engineering and Management develops specialists who are versed in a range of science and technology fields, have a strong understanding of people and societies, and have systematized knowledge and a systematic way of thinking regarding nuclear safety, energy, and radiation science and their applications. These individuals have an international perspective and can take responsibility for both academic and practical R&D, planning, design, production, management, and policy recommendations for science and its applications. Moreover, the Department aims to develop experts who can proactively take on the challenge of conducting cutting-edge research in unexplored fields and pursue research that can lead to new technological innovations, thus contributing to the sustainability and development of society.

Department of Bioengineering

Bioengineering serves as a bridge between the world of science and the fields of health, medical care & welfare, drug creation, the environment, energy, food, nano & biotechnology, safety & security, and information. The Department of Bioengineering is committed to building methodologies for bioengineering for the sustainable development of humanity and promotion of human health and welfare in aging societies with falling birthrates; efforts are based in the existing disciplines of machinery, electricity, physics, chemistry, materials and more. Through its education and research activities, the Department aims to develop specialists who can serve as key players in strategic research and bioengineering development.
Department of Technology Management for Innovation

The Department of Technology Management for Innovation develops next-generation leaders who can play a central role in innovation by helping students to gain professional knowledge in three fields: scientific innovation, economics & management, and social systems (as well as in the rapidly developing field of AI). Students will also be supported in gaining the intellectual and creative capabilities to strategically integrate such fields. Moreover, the Department promotes research projects across the fields of smart industry, new energy & systems, management of medical services, and resilience engineering, with the aim of contributing to the realization of Society 5.0 and the SDGs set by the United Nations.

Nuclear Professional School

The Nuclear Professional School fosters research in the field of advanced nuclear reactor engineering (including nuclear fusion), decommissioning engineering, advanced laser beam science, and medical physics. Moreover, as the only professional school specializing in the nuclear field in Japan, the School helps students to acquire deep knowledge about safe operation, maintenance, and supervision of nuclear-related facilities, thereby developing engineers with advanced skills who can play leading roles in the nuclear industry and at relevant administrative organizations and R&D institutions.
(4) Undergraduate Departments

Department of Civil Engineering

The Department of Civil Engineering develops specialists who can lead the fields of design, technological strategies, and policies & planning for the establishment and operation of civil infrastructure relating to transportation, the environment, cities, disaster prevention, landscaping, information, energy, and more by taking a broad view based on the history, nature, and culture of each country/region (in addition to an international perspective).

Department of Architecture

In addition to providing the academic, technical, and artistic knowledge required for planning, structures, and the environment (which includes studies of plans, design, fabrication, and maintenance), the Department of Architecture aims to develop specialists who can utilize their knowledge comprehensively for architectural designs and proposals; individuals who are able to take a broad view and have the creativity to contribute to the sustainable development of society.

Department of Urban Engineering

The Department of Urban Engineering aims to develop leaders who have systematized knowledge about urban engineering and can contribute to the sound, sustainable development of national land and local communities in the fields of urban planning, urban design, urban transportation planning, urban analysis, urban environmental engineering, urban water systems, international urban environments, environmental design, and urban management.

Department of Mechanical Engineering

The Department of Mechanical Engineering is tasked with promoting research and education in a range of fields, including the four fundamental disciplines of mechanical engineering: mechanical dynamics, material mechanics, fluid dynamics, and thermodynamics. Moreover, the work of the Department encompasses these fundamentals’ fields of application, which range from the environment & energy, to biology and medical treatment. Through research of fundamentals and of applied fields in the domain of advanced science, the Department aims to foster engineers and researchers who can lead the development of new technologies.
Department of Mechano-Informatics

The Department of Mechano-Informatics is committed to developing the next generation of leaders and researchers; individuals with precise thinking who can take a global view in order to develop theories and systems to connect people, machines, and information. To this end, the Department provides students with opportunities to better understand people and create tangible objects through studies of informatics and mechanical engineering. Through these efforts, the Department works to develop specialists who have practical knowledge and hands-on experience with mechano-informatics.

Department of Aeronautics and Astronautics

The Department of Aeronautics and Astronautics fosters education and research in the field of system integration and system engineering. Specifically, the Department educates students on the four primary topics (hydrodynamics, mechanical & structural dynamics, control engineering, and thermodynamics) that represent the fundamental technologies used for aircraft and their engines, rockets, and artificial satellites. Students will also learn how to combine these fundamental technologies to create and operate reliable systems. The advanced technologies applied for systems operations in extreme conditions can also be applied to other fields.

Department of Precision Engineering

The Department of Precision Engineering provides students with a wide range of knowledge on the fundamentals of robot technology (RT) and production technology (PT) in the fields of materials, processing, machinery, electricity, and systems. With studies based in these two fundamental technologies, the Department fosters research on precision processing and measurement, synthesis of intelligent machines, systematization of information and knowledge for products and product manufacturing, biomedical devices, and service robots.

Department of Information and Communication Engineering

The Department of Information and Communication Engineering aims to develop specialists who can advance existing technologies and create new technologies in the fields of electronics, including computer and information processing (hardware and software), information networking, communication systems, media and signal processing, and intelligent information processing. The Department also has a program for undergraduate students to give presentations about their research results outside Japan.
Department of Electrical and Electronic Engineering

The Department of Electrical and Electronic Engineering is engaged in the field of physics with a focus on electromagnetism and quantum physics but is also sophisticating its research activities across a wider range of fields related to information science (such as 1) nanophysics, photons, and biotechnology; 2) energy, the environment and space; and 3) system electronics). The Department is committed to developing next generation leaders who can create new technologies in the aforementioned fields and demonstrate their abilities on a global scale.

Department of Applied Physics

Physics is a field of study which examines methods of approaching the unknown. The Department of Applied Physics aims to develop specialists who can use the fundamental and advanced knowledge gained through their studies to create new academic and industrial fields.

Department of Mathematical Engineering and Information Physics

The Department of Mathematical Engineering and Information Physics pursues engineering that promotes the welfare of humanity based on knowledge of mathematics, physics, and information science. In particular, the Department aims to create basic ways of thinking, universal principles, and systematic methodologies to help solve a variety of issues in a range of fields (beyond specific industries) and to develop specialists who can explore the array of new possibilities provided by engineering.

Department of Materials Engineering

The environment, energy, information & communications, medical care, and other fields relating to human activities are supported by materials engineering. The Department of Materials Engineering aims to develop specialists who can contribute to the sustainable development of humanity by using what they have acquired at the Department; specifically, systematized knowledge about materials engineering (fundamental and applied knowledge) and the R&D ability to create new materials. To this end, the Department provides courses for 1) biomaterials, 2) eco-materials, and 3) nano-materials for comprehensive and international education and training, with the goal of developing the next generation of leaders; individuals able to take a broad view.
Department of Applied Chemistry

The Department of Applied Chemistry’s ultimate goal is to contribute to the sustainable development of humanity and the global environment through the creation of new chemistry-based fields and technologies. To this end, the Department provides students with opportunities to learn basic chemistry in a systematic manner, including physical chemistry, quantum chemistry, inorganic chemistry, organic chemistry, and analysis chemistry (as well as how to conduct advanced, comprehensive research in graduate school). The Department thereby develops specialists who can contribute to the development of advanced knowledge and next-generation technologies.

Department of Chemical System Engineering

The Department of Chemical System Engineering develops chemical system engineers and researchers capable of building and analyzing macro-scale systems through chemistry-based development of materials (on atomic and molecular levels) and through control of chemical reactions. At the same time, the Department aims to develop specialists who can apply their knowledge to work toward creating a sustainable society through solving social issues related to the environment, energy, medical care, and safety & security.

Department of Chemistry and Biotechnology

The Department of Chemistry and Biotechnology aims to develop technologies that make significant contributions to society in the fields of both chemistry and biotechnology. To this end, the Department provides students with opportunities to systematically gain knowledge across a range of academic fields, including organic chemistry, polymer chemistry, life science, and molecular biology. Students also learn how to conduct comprehensive, advanced research in graduate school. The Department aims to develop specialists who can contribute to the development of next-generation technologies.

Department of Systems Innovation

The modern social problems we are facing are complex and hard to be solved with the science and engineering knowledge of the twentieth century. That is why the Department of Systems Innovation is preparing experts able to solve problems from a higher perspective by integrating science and engineering knowledge with social sciences, as well as incorporating the recent advancement in technology, in order to find answers to some basic questions such as: “What are the future needs of our society?”, or “What can be created or designed to fulfill those future demands?”. Our department has abolished the old-style teaching method of just transferring knowledge, and instead we have put emphasis on PBL (Project Based Learning). The ultimate aim is to help students acquire specific knowledge (i.e. facts, principles, techniques, etc.) and also to learn how to use them.
Research Center for Water Environment Technology

In an effort to respond to various social needs in an environment-oriented society, this Research Center fosters research to develop advanced water environment management systems by fusing and linking fundamental and applied sciences. The center promotes frontier research to become a transdisciplinary and flexible core hub in the field of water engineering. The major fields are: water quality control technologies and development of new materials, upgrading of sewer infrastructure with IoT-sensing technologies and water system management such as urban inundation risk management, and international water environment issues related to water and sanitation.

Quantum-Phase Electronics Center

The Quantum-Phase Electronics Center develops innovative principles for materials science for superefficient energy conversion and super energy-saving electronics, which are essential for the creation of a sustainable society. The Center conducts experiments and research on strongly correlated quantum matter to propose new principles for electronic technologies based on the emergence of quantum matter (such as Mottronics, topological electronics and skyrmionics) and performs tests to establish the principles.

Institute of Engineering Innovation

Under the leadership of the Dean of School of Engineering, the Institute fosters the following: strategic research for the creation of new scientific fields; large projects that contribute to the School of Engineering; collaborative programs between industries and the University; and the associate professor program for new frontier research (designed for the education of outstanding young faculty members). Moreover, the Institute is in charge of the maintenance of basic technologies shared across the School of Engineering. It supports the use of a range of world-leading analysis equipment both inside and outside the university (through a nationwide system for shared use).

The Frontier Research Center for Energy and Resources

The Frontier Research Center for Energy and Resources aims to create innovative and environment-friendly technologies to ensure a stable supply of energy and mineral resources. The Center also aims to develop novel technologies and systems for discovering and exploring frontier resources in deep sea and in space. In particular, the Center focuses on advanced research activities such as: 1) oil and natural gas development and CCS (Carbon dioxide Capture and Storage) for environmental harmonization, 2) development of seafloor methane hydrate around Japan, 3) exploration and development of seafloor mineral resources in the Japanese exclusive economic zone, and 4) creation of resources through artificial processes.
Photon Science Center

The Photon Science Center was established with the aim of becoming an international center for optical science research and education. The Center is committed to building principles and technologies for modern optical science. It fosters doctoral education and supports young researchers. In particular, the Center aims to create innovative technologies to generate, manipulate, and utilize light waves and photons.

Institute for Innovation in International Engineering Education

The Institute was established as a part of the School of Engineering in April 2011 in order to build a foundation for international education and research in the field of engineering, to gather excellent students and faculty from inside and outside Japan, and to promote international collaboration in education. The Institute aims to enhance the University’s international attractiveness as a world-leading university and anticipate the future of Japan as a technology-oriented country. It has the Global Center for Innovation in Engineering Education, the Center for Engineering Fundamentals, the Center for International Affairs, the Center for Interdisciplinary Research and Education Collaboration and the Center for Project-Oriented Engineering.

Medical Device Development and Regulation Research Center

Because technologies used in medical care and welfare devices affect human health, their risks and benefits need to be scientifically analyzed at the R&D stage to maximize benefits while minimizing risks. The Center conducts research on technologies for new medical care and welfare devices as well as on the methods for the scientific evaluation of the devices’ performance and safety. The Center works toward early clinical use of the research results obtained at the School of Engineering for advanced medical care and welfare.

Resilience Engineering Research Center

New ideas for risk management are needed in a variety of fields, and the concept of resilience (which refers to a system’s ability to maintain regular conditions by minimizing the influence of external disturbances or internal changes to its overall functionality) is drawing attention. The Center fosters education and research on principles and methodologies with the aim of creating resilient systems.
Spintronics is an interdisciplinary research field in which materials, devices, and systems are developed by introducing spin degrees of freedom to electronics and information processing. The field has been rapidly developing in terms of both scientific and applied technologies, and the dramatic development of new energy-saving ICT is expected. The Center was established to build a nationwide network of researchers and bring their abilities together to foster innovation and make contributions to society.

Research into Artifacts, Center for Engineering

Artifactology is a new discipline for the development of methodologies and their systemization for next-generation manufacturing (including services) and value creation, in order to solve the various modern societal issues and realize a sustainable society. In this center, we promote the dissemination of artifactology to society by industry-academia-government co-creation, new fundamental research for next-generation manufacturing, and human resources development through these activities, by three research divisions on Value Creation, Cognitive Mechanism, and Applied Intelligence.
4. Number of Faculty and Staff Members

(As of May 1, 2019)

Number of Faculty Members

<table>
<thead>
<tr>
<th>Department</th>
<th>Professor</th>
<th>Associate Professor</th>
<th>Lecturer</th>
<th>Assistant Professor</th>
<th>Research Assistant</th>
<th>Project Professor</th>
<th>Project Associate Professor</th>
<th>Project Lecturer</th>
<th>Project Assistant Professor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Civil Engineering</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>Department of Architecture</td>
<td>11</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>Department of Urban Engineering</td>
<td>7</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Department of Mechanical Engineering</td>
<td>12</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>Department of Precision Engineering</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td>3</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Systems Innovation</td>
<td>11</td>
<td>16</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td></td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Department of Aeronautics and Astronautics</td>
<td>11</td>
<td>6</td>
<td>7</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Electrical Engineering and Systems</td>
<td>13</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Department of Applied Physics</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Materials Engineering</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Applied Chemistry</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Chemical System Engineering</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
<td>7</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry and Biotechnology</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Department of Advanced Interdisciplinary Studies</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Nuclear Engineering and Management</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Bioengineering</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Department of Technology Management for Innovation</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Nuclear Professional School</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Research Center for Water Environment Technology</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum-Phase Electronics Center</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institute of Engineering Innovation</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Frontier Research Center for Energy and Resources</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photon Science Center</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Institute for Innovation in International Engineering Education</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Medical Device Development and Regulation Research Center</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resilience Engineering Research Center</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center for Spintronics Research Network</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research into Artifacts, Center for Engineering</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Health and Safety Office</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>156</td>
<td>124</td>
<td>124</td>
<td>4</td>
<td>11</td>
<td>23</td>
<td>13</td>
<td>46</td>
<td>535</td>
<td></td>
</tr>
</tbody>
</table>

Number of Staff Members

<table>
<thead>
<tr>
<th>Administrative Division</th>
<th>Technical Division</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>M F M F M F M F M F M F M F M F M F M F M F</td>
<td>M F M F M F</td>
<td>66 72 66 14</td>
</tr>
</tbody>
</table>

Administrative/Technical Division

- **Administrative Division**: 2
- **Student Affairs Group**: 50
- **Center for International Affairs**: 8
- **Information Library Group**: 12
- **General Affairs Group**: 29
- **Financial Group(with technical staff member)**: 37
- **Subtotal**: 138
- **Technical Division**: 80
- **Total**: 218
5. Numbers of Students

(1) Number of Undergraduate Students and Research Students in the School of Engineering (As of May 1, 2019)

<table>
<thead>
<tr>
<th>Department</th>
<th>Admission capacity</th>
<th>No. of students</th>
<th>No. of research students</th>
<th>No. of new students</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>F</td>
<td>Total</td>
</tr>
<tr>
<td>Department of Civil Engineering</td>
<td>80</td>
<td>103</td>
<td>12</td>
<td>115</td>
</tr>
<tr>
<td>Department of Architecture</td>
<td>120</td>
<td>103</td>
<td>25</td>
<td>128</td>
</tr>
<tr>
<td>Department of Urban Engineering</td>
<td>100</td>
<td>89</td>
<td>23</td>
<td>112</td>
</tr>
<tr>
<td>Mechanical engineering departments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Mechanical Engineering</td>
<td>170</td>
<td>262</td>
<td>25</td>
<td>287</td>
</tr>
<tr>
<td>Department of Mechano-Informatics</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Aeronautics and Astronautics</td>
<td>104</td>
<td>110</td>
<td>9</td>
<td>119</td>
</tr>
<tr>
<td>Department of Precision Engineering</td>
<td>90</td>
<td>84</td>
<td>12</td>
<td>96</td>
</tr>
<tr>
<td>Electronic engineering/information departments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Information and Communication Engineering</td>
<td>80</td>
<td>267</td>
<td>12</td>
<td>279</td>
</tr>
<tr>
<td>Department of Electrical and Electronic Engineering</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Applied Physics</td>
<td>100</td>
<td>120</td>
<td>4</td>
<td>124</td>
</tr>
<tr>
<td>Department of Mathematical Engineering and Information Physics</td>
<td>110</td>
<td>115</td>
<td>13</td>
<td>128</td>
</tr>
<tr>
<td>Department of Materials Engineering</td>
<td>150</td>
<td>161</td>
<td>12</td>
<td>173</td>
</tr>
<tr>
<td>Department of Applied Chemistry</td>
<td>110</td>
<td>88</td>
<td>15</td>
<td>103</td>
</tr>
<tr>
<td>Department of Chemical System Engineering</td>
<td>100</td>
<td>78</td>
<td>8</td>
<td>86</td>
</tr>
<tr>
<td>Department of Chemistry and Biotechnology</td>
<td>100</td>
<td>63</td>
<td>24</td>
<td>87</td>
</tr>
<tr>
<td>Department of Systems Innovation</td>
<td>232</td>
<td>285</td>
<td>13</td>
<td>298</td>
</tr>
<tr>
<td>Total</td>
<td>1,896</td>
<td>1,928</td>
<td>207</td>
<td>2,135</td>
</tr>
</tbody>
</table>

* Admission capacity: From the values in the table added to “Department Regulations Chapter 1, Article 2,” the number of undergraduates for the latter half of the curriculum (annual).

* The total in the admission capacity column includes third-year students transferred from other departments (10 people x 2 years = 20 people).

* Regarding the number of new students: students transferred from other colleges or universities are shown in parentheses, students transferred from other departments are shown in brackets, and students entering the department after graduating from other departments, colleges or universities are shown in angled brackets.

(2) Number of Graduate Students and Research Students in the School of Engineering (As of May 1, 2019)

<table>
<thead>
<tr>
<th>Department</th>
<th>Master’s course</th>
<th>No. of students</th>
<th>No. of research students</th>
<th>No. of new students</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of students</td>
<td>M</td>
<td>F</td>
<td>Total</td>
</tr>
<tr>
<td>Department of Civil Engineering</td>
<td>104</td>
<td>171</td>
<td>35</td>
<td>206</td>
</tr>
<tr>
<td>Department of Architecture</td>
<td>164</td>
<td>151</td>
<td>72</td>
<td>223</td>
</tr>
<tr>
<td>Department of Urban Engineering</td>
<td>104</td>
<td>107</td>
<td>47</td>
<td>154</td>
</tr>
<tr>
<td>Department of Mechanical Engineering</td>
<td>104</td>
<td>201</td>
<td>18</td>
<td>219</td>
</tr>
<tr>
<td>Department of Precision Engineering</td>
<td>54</td>
<td>108</td>
<td>27</td>
<td>135</td>
</tr>
<tr>
<td>Department of Systems Innovation</td>
<td>90</td>
<td>155</td>
<td>23</td>
<td>178</td>
</tr>
<tr>
<td>Department of Electrical and Information Systems</td>
<td>140</td>
<td>248</td>
<td>25</td>
<td>273</td>
</tr>
<tr>
<td>Department of Applied Physics</td>
<td>84</td>
<td>93</td>
<td>3</td>
<td>96</td>
</tr>
<tr>
<td>Department of Materials Engineering</td>
<td>90</td>
<td>126</td>
<td>18</td>
<td>144</td>
</tr>
<tr>
<td>Department of Applied Chemistry</td>
<td>66</td>
<td>76</td>
<td>14</td>
<td>90</td>
</tr>
<tr>
<td>Department of Chemical System Engineering</td>
<td>56</td>
<td>78</td>
<td>16</td>
<td>94</td>
</tr>
<tr>
<td>Department of Chemistry and Biotechnology</td>
<td>64</td>
<td>81</td>
<td>27</td>
<td>108</td>
</tr>
<tr>
<td>Department of Advanced Interdisciplinary Studies</td>
<td>138</td>
<td>73</td>
<td>15</td>
<td>88</td>
</tr>
<tr>
<td>Department of Nuclear Engineering and Management</td>
<td>44</td>
<td>54</td>
<td>7</td>
<td>61</td>
</tr>
<tr>
<td>Department of Bioengineering</td>
<td>58</td>
<td>67</td>
<td>26</td>
<td>93</td>
</tr>
<tr>
<td>Department of Technology Management for Innovation</td>
<td>35</td>
<td>57</td>
<td>22</td>
<td>79</td>
</tr>
<tr>
<td>Nuclear Professional School</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,211</td>
<td>1,896</td>
<td>384</td>
<td>2,280</td>
</tr>
</tbody>
</table>

* Master’s course: Master’s course admission capacity.

* Doctoral course: Doctoral course admission capacity.

* Professional school: Professional school admission capacity.
(3) Percentage of Students Enrolled at the School of Engineering at the University of Tokyo (As of May 1, 2019)

- Undergraduate courses:
 - School of Engineering: 2,135 (15%)
 - Other schools: 11,923
 - Total: 14,058

- Master’s courses:
 - School of Engineering: 2,280 (32%)
 - Other schools: 4,876
 - Total: 7,156

- Doctoral courses:
 - School of Engineering: 1,058 (18%)
 - Other schools: 4,674
 - Total: 5,732

(4) Numbers of Students by Year (As of May 1, 2019) *Including students attending professional school

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>2,104</td>
<td>2,165</td>
<td>2,175</td>
<td>2,150</td>
<td>2,156</td>
<td>2,141</td>
<td>2,141</td>
<td>2,180</td>
<td>2,186</td>
<td>2,162</td>
<td>2,135</td>
</tr>
<tr>
<td>Total</td>
<td>5,138</td>
<td>5,287</td>
<td>5,439</td>
<td>5,370</td>
<td>5,303</td>
<td>5,260</td>
<td>5,315</td>
<td>5,390</td>
<td>5,466</td>
<td>5,478</td>
<td>5,490</td>
</tr>
</tbody>
</table>

No. of students

- Undergraduate courses:
 - 2009: 2,104
 - 2010: 2,165
 - 2011: 2,175
 - 2012: 2,150
 - 2013: 2,156
 - 2014: 2,141
 - 2015: 2,141
 - 2016: 2,180
 - 2017: 2,186
 - 2018: 2,162
 - 2019: 2,135

- Graduate courses:
 - 2009: 3,034
 - 2010: 3,122
 - 2011: 3,264
 - 2012: 3,220
 - 2013: 3,147
 - 2014: 3,119
 - 2015: 3,174
 - 2016: 3,210
 - 2017: 3,280
 - 2018: 3,316
 - 2019: 3,355

- Total:
 - 2009: 5,138
 - 2010: 5,287
 - 2011: 5,439
 - 2012: 5,370
 - 2013: 5,303
 - 2014: 5,260
 - 2015: 5,315
 - 2016: 5,390
 - 2017: 5,466
 - 2018: 5,478
 - 2019: 5,490
(5) Number of Doctoral Graduates (As of March 31, 2019)

<table>
<thead>
<tr>
<th>Category</th>
<th>Former system</th>
<th>New system (Doctorate by course of study)</th>
<th>New system (Doctorate by dissertation)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cumulative total Academic year 2018</td>
<td>Cumulative total Academic year 2018</td>
<td>Cumulative total Academic year 2018</td>
</tr>
<tr>
<td>Doctor of Engineering</td>
<td>1,916</td>
<td>2,940</td>
<td>3,202</td>
<td>8,058</td>
</tr>
<tr>
<td>Doctor (Engineering)</td>
<td>273</td>
<td>6,800</td>
<td>34</td>
<td>9,630</td>
</tr>
<tr>
<td>Doctor (Other)</td>
<td>2</td>
<td>123</td>
<td>1</td>
<td>139</td>
</tr>
</tbody>
</table>

(6) Number of Doctoral Graduates by Year (As of May 1, 2019)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctorate by course of study (Engineering)</td>
<td>228</td>
<td>190</td>
<td>274</td>
<td>265</td>
<td>269</td>
<td>266</td>
<td>232</td>
<td>241</td>
<td>261</td>
<td>273</td>
</tr>
<tr>
<td>Doctorate by course of study (Other)</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Doctorate by dissertation (Engineering)</td>
<td>50</td>
<td>45</td>
<td>39</td>
<td>49</td>
<td>37</td>
<td>35</td>
<td>24</td>
<td>35</td>
<td>35</td>
<td>34</td>
</tr>
<tr>
<td>Doctorate by dissertation (Other)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>279</td>
<td>240</td>
<td>317</td>
<td>319</td>
<td>313</td>
<td>305</td>
<td>263</td>
<td>280</td>
<td>307</td>
<td>310</td>
</tr>
</tbody>
</table>

(7) Paths after Graduation (As of March 31, 2019)

<table>
<thead>
<tr>
<th>Path</th>
<th>Undergraduate</th>
<th>Master’s</th>
<th>Doctoral</th>
<th>Professional School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals who graduated/completed coursework in academic year 2018</td>
<td>996</td>
<td>980</td>
<td>326 (50)</td>
<td>16</td>
</tr>
<tr>
<td>Next stage of education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate schools</td>
<td>809</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other faculties, etc.</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialized training colleges/foreign schools</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>818</td>
<td>160</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture and forestry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisheries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mining and quarrying of stone and gravel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>4</td>
<td>51</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td>25</td>
<td>279</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Electricity, gas, heat supply, and water utilities</td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information & communications</td>
<td>26</td>
<td>110</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Transport and postal services</td>
<td>4</td>
<td>26</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Wholesale and retail trade</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Finance and insurance</td>
<td>11</td>
<td>50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Real estate, renting, and leasing</td>
<td>4</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Scientific research and professional/technical services</td>
<td>4</td>
<td>31</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Accommodations and restaurants</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living-related services and entertainment services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education and learning support</td>
<td>2</td>
<td>8</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Medical care and welfare</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Compound services</td>
<td>3</td>
<td>19</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Services (not elsewhere classified)</td>
<td>8</td>
<td>22</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public service</td>
<td>14</td>
<td>22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>35</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>118</td>
<td>705</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>60</td>
<td>115</td>
<td>127</td>
<td>16</td>
</tr>
</tbody>
</table>

* The numerical figure in parentheses shows the number of students who completed coursework without a degree and is included in the total number.
(1) Partner Universities/Institutes with Academic Exchange Agreements (As of May 1, 2019)

<table>
<thead>
<tr>
<th>Region</th>
<th>Country/Region</th>
<th>University (Institution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>India</td>
<td>* Indian Institute of Technology Kharagpur (MOU only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Indian Institute of Technology Kanpur (MOU only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Indian Institute of Technology Delhi (MOU only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Indian Institute of Technology Hyderabad (MOU only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Indian Institute of Technology Madras (MOU only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ Indian Institute of Technology Bombay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Indian Institute of Management Bangalore</td>
</tr>
<tr>
<td></td>
<td>Indonesia</td>
<td>* Faculty of Public Health, University of Indonesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Bandung Institute of Technology (MOU only)</td>
</tr>
<tr>
<td></td>
<td>Kazakhstan</td>
<td>Faculty of Mechanics and Mathematics, Faculty of Biology, Faculty of Chemistry, Faculty of Physics, Al-Farabi Kazakh National University</td>
</tr>
<tr>
<td>Singapore</td>
<td>* College of Engineering, Nanyang Technological University</td>
<td></td>
</tr>
<tr>
<td>Singapore and China</td>
<td>* School of Design and Environment, National University of Singapore/College of Architecture and Urban Planning, Tongji University/School of Architecture, Tsinghua University</td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>* Faculty of Engineering, University of Moratuwa</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>* Faculty of Engineering, Chulalongkorn University</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ Sirindhorn International Institute of Technology (SIIT), Thammasat University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ Asian Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coordinating Committee for Geoscience Programmes in East and Southeast Asia</td>
</tr>
<tr>
<td>Vietnam</td>
<td>* Hanoi University of Science, Vietnam National University, Hanoi (MOU only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hue University of Sciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vietnam Academy of Science and Technology, Vietnam National Satellite Center</td>
</tr>
<tr>
<td>Malaysia</td>
<td>* Institute of Technology Petronas SDN BHD</td>
<td></td>
</tr>
<tr>
<td>South Korea</td>
<td>* The College of Engineering, the College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology (KAIST)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ Sungkyunkwan University</td>
</tr>
<tr>
<td>South Korea and China</td>
<td>* Tsinghua University/the College of Engineering, Seoul National University</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>* Tsinghua University</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ Zhejiang University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central South University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chongqing University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xi’an Jiaotong University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harbin Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ Dalian University of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WuXi Municipal People’s Government</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tianjin University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tongji University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Southeast University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Institute of Mountain Hazards and Environment, Chinese Academy of Sciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ School of Electronic Information Engineering, School of Aeronautical Science and Engineering, Beihang University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beijing University of Chemical Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ Beijing Jiaotong University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>College of Chemical Engineering, Fuzhou University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ Faculty of Construction and Environment, the Hong Kong Polytechnic University</td>
</tr>
<tr>
<td>Taiwan</td>
<td>* College of Design, College of Engineering, National Taipei University of Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College of Design, College of Engineering, National Taiwan University of Science and Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College of Electrical Engineering and Computer Science, National Cheng Kung University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial Technology Research Institute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College of Technology Management, National Tsing Hua University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College of Engineering, National Taiwan University (MOU only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asia University (Taiwan)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College of Engineering, Chung Yuan Christian University</td>
<td></td>
</tr>
<tr>
<td>Myanmar</td>
<td>* Yangon Technological University</td>
<td></td>
</tr>
<tr>
<td>Oceania</td>
<td>Australia</td>
<td>* Royal Melbourne Institute of Technology (RMIT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ Division of Information Technology, Engineering and the Environment, University of South Australia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◆ Science and Engineering Faculty, Queensland University of Technology</td>
</tr>
<tr>
<td>New Zealand</td>
<td>* The College of Engineering, The University of Canterbury</td>
<td></td>
</tr>
<tr>
<td>UAE</td>
<td>The Petroleum Institute, Abu Dhabi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College of Engineering, Khalifa University of Science, Technology and Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faculty of Engineering Technology, Higher Colleges of Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Masdar Institute of Science and Technology (MOU only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>United Arab Emirates University</td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>King Abdullah University for Science and Technology (KAUST)</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>* Faculty of Engineering, Middle East Technical University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◆ Istanbul Technical University</td>
<td></td>
</tr>
<tr>
<td>South America</td>
<td>Colombia</td>
<td>Faculty of Engineering, Antioquia University/ Faculty of Architecture, La Salle University/Faculty of Arts and Institute of Technological Investigations, National University of Columbia/ Faculty of Architecture and Arts, Pontificia Bolivariana University/ Faculty of Architecture and Design, University of Los Andes</td>
</tr>
<tr>
<td></td>
<td>◆ The University of São Paulo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◆ Federal University of Pernambuco</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>Country/Region</td>
<td>University (Institution)</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| North America | United States of America | Massachusetts Institute of Technology
* The University of Washington College of Engineering (Seattle)
◆ Clemson University
◆ Rice University
* University of California (MOU only)
* Eli and Edythe Broad CRIM Center for Regenerative Medicine and Stem Cell Research, the University of Southern California
Harvard School of Dental Medicine
Massachusetts General Hospital |
| Canada | | University of Toronto
McMaster University |
| United Kingdom | | University of Essex
Business School and The Department of Geography, Durham University
School of Engineering, Cardiff University
Department of Engineering, University of Cambridge
National Oceanography Centre |
| Italy | | Politecnico di Torino
◆ National Institute for Nuclear Physics
* Politecnico di Milano
* L’ Istituto di BioRobotica, Scuola Superiore di Studi Universitari edi Perfezionamento Sant’ Anna |
| Austria | | Vienna University of Technology
* Graz University of Technology
* University of Twente |
| The Netherlands | | Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology
* University of Twente
* Swiss Federal Institute of Technology Lausanne (EPFL)
* Faculty of Science, Faculty Economics, Business Administration & IT, University of Zurich
* Chalmers University of Technology
* Lund University
* Luleå University of Technology
* The Institute of Technology, Linköping University
The Swedish Governmental Agency for Innovation Systems (VINNOVA)
◆ KTH Royal Institute of Technology |
| Spain | | School of Architecture, Technical University of Madrid
* Universitat Politècnica de València |
| Denmark | | Technical University of Denmark
* Technical University of Munich
◆ University of Stuttgart
* Karlsruhe Institute of Technology
Department of Microsystems Engineering, Albert-Ludwigs-University Freiburg
Faculty of Biology, Albert-Ludwigs-University Freiburg
* Darmstadt University of Technology
* Faculty of Engineering, Friedrich-Alexander University Erlangen-Nuremberg
* Faculty of Mathematics, Computer Science and Natural Sciences, Faculty of Architecture, Faculty of Civil Engineering, Faculty of Mechanical Engineering, and Faculty of Electrical Engineering and Information Technology, RWTH Aachen University
Ulm University |
| Norway | | Norwegian University of Science and Technology (NTNU) |
| Finland | | Aalto University (former Helsinki University of Technology) |
| France | | École Polytechnique
* Centrale Supélec (former École Centrale Paris)
* IMT Atlantique (former Ecole des Mines de Nantes)
* National Institute of Applied Sciences of Lyon (INSA Lyon)
* Faculty of Engineering, Pierre and Marie Curie University
* École des Ponts ParisTech (ENPC)
* École des Mines de Paris
* Institut Supérieur de l’ Aéronautique et de l’ Espace (ISAE)
* École Centrale de Lyon
* French Civil Aviation University (ENAC)
École Nationale Supérieure d’ Architecture de Paris la Villette
* University of Technology of Troyes
* Université Savoie Mont Blanc
École normale supérieure (Saclay)
National Centre for Nuclear Research (NCBJ)
Transylvania University of Brașov |
| Poland | | Faculty of Economics and Law, Faculty of Mechanics and Technology, Faculty of Electronics, Communications and Computer, The University of Pitești |
| Romania | | Architecture and Urbanism Student Mobility International Programme (AUSMIP) (École Nationale Supérieure Architecture de Paris La Villette/ Faculty of Architecture, The University of Leuven; Faculty of Architecture, University of Lisbon/ Department of Architecture, Technical University of Munich/ and The University of Architecture, Civil Engineering and Geodesy, Sofia)
* Saint Petersburg State University |
| EU (France, Belgium, Portugal, Germany, and Bulgaria) | | A total of 130 partner universities/institutions in 37 countries and regions
Universities/institutions shown with *: Credit transfers and tuition waivers included in the agreements
Universities/institutions shown with ◆: University-wide (UW) agreements
The table above shows the UW and department-level agreements of which the School of Engineering is in charge. For other agreements in The University of Tokyo, refer to the following International Affairs Department page:
http://dir.u-tokyo.ac.jp/SysKyotei/01/?module=User&clear=1

22
(2) Number of Foreign Students (As of May 1, 2019)

<table>
<thead>
<tr>
<th>Department</th>
<th>Undergraduate</th>
<th>Undergraduate auditor</th>
<th>Undergraduate special auditor</th>
<th>Master’s course</th>
<th>Doctoral course</th>
<th>Graduate school special research student</th>
<th>Graduate special auditor</th>
<th>Graduate school research student</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Civil Engineering</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>146</td>
</tr>
<tr>
<td>Department of Architecture</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>56</td>
</tr>
<tr>
<td>Department of Mechanical Engineering</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>127</td>
</tr>
<tr>
<td>Department of Mechanics-Information</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>79</td>
</tr>
<tr>
<td>Department of Precision Engineering</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>Department of Systems Innovation</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td>Department of Aeronautics and Astronautics</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>Department of Electrical Engineering and Information Systems</td>
<td>38</td>
<td>41</td>
<td>52</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>176</td>
</tr>
<tr>
<td>Department of Information and Communication Engineering</td>
<td>13</td>
<td>14</td>
<td>27</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Department of Electrical and Electronic Engineering</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Nuclear Engineering and Information departments</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Department of Applied Physics</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Department of Mathematical Engineering and Information Physics</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Department of Materials Engineering</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Department of Applied Chemistry</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Department of Chemical System Engineering</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Department of Chemistry and Biotechnology</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Department of Advanced Interdisciplinary Studies</td>
<td>11</td>
<td>31</td>
<td>42</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Department of Nuclear Engineering and Management</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Department of Bioengineering</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Nuclear Professional School</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>53</td>
<td>70</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>83</td>
<td>193</td>
<td>1,265</td>
</tr>
</tbody>
</table>

(3) Number of Foreign Students by Year (As of May 1, 2019)

![Number of foreign students by year graph](image)

(4) Percentage of Foreign Students by Year (As of May 1, 2019)

![Percentage of foreign students by year graph](image)

Only for students taking regular courses (Research students and auditors are excluded)
Number of Foreign Students by Nationality (As of May 1, 2019) (Unit: Persons)

<table>
<thead>
<tr>
<th>Region (No. of countries)</th>
<th>Region</th>
<th>No. of countries</th>
<th>Nationality</th>
<th>Undergraduate students, research students, special auditors, and auditors</th>
<th>Master's course</th>
<th>Doctoral course</th>
<th>Graduate school foreign research student</th>
<th>Total</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia (19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bangladesh</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myanmar</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Philippines</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>21</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambodia</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laos</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lebanon</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jordan</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yemen</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuwait</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sudan</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisia</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morocco</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malawi</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gambia</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angola</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palau</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panama</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Netherlands</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosovo</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tajikistan</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,137</td>
</tr>
</tbody>
</table>

Notes:
- Total includes self-sponsored and government-sponsored students.
- Data rounded to the nearest whole number.
7. Research Activities

(1) External Financial Sources

<table>
<thead>
<tr>
<th>Type</th>
<th>Academic year 2016</th>
<th>Academic year 2017</th>
<th>Academic year 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of cases</td>
<td>Amount (1,000 yen)</td>
<td>No. of cases</td>
</tr>
<tr>
<td>Grants-in-Aid for Scientific Research</td>
<td>622</td>
<td>3,088,420</td>
<td>578</td>
</tr>
<tr>
<td>Commissioned research, etc.</td>
<td>311</td>
<td>7,630,945</td>
<td>332</td>
</tr>
<tr>
<td>Cooperative Research</td>
<td>427</td>
<td>2,541,595</td>
<td>445</td>
</tr>
<tr>
<td>Donations</td>
<td>345</td>
<td>939,135</td>
<td>359</td>
</tr>
<tr>
<td>Other subsidies</td>
<td>72</td>
<td>1,559,595</td>
<td>70</td>
</tr>
<tr>
<td>Total</td>
<td>1,777</td>
<td>15,759,690</td>
<td>1,784</td>
</tr>
</tbody>
</table>

(2) Sponsored Chairs (As of April 1, 2019) (Unit: 1,000 yen)

<table>
<thead>
<tr>
<th>Description</th>
<th>Sponsor</th>
<th>Total amount donated</th>
<th>Duration</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toyota Motor Corporation; DENSO Corporation; Sekisui Chemical Co., Ltd.; Japanese Standards Association; Union of Japanese Scientists and Engineers; VeriServe Corporation; Paramount Bed Co., Ltd.; Kobayashi Create Co., Ltd.; and Nikkenkyo</td>
<td>143,000</td>
<td>Jul. 1, 2016 to Jun. 30, 2021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hitachi, Ltd.; Mitsubishi Electric Corporation; and Sumitomo Electric Industries, Ltd.</td>
<td>150,000</td>
<td>Jun. 1, 2013 to May 31, 2018</td>
<td></td>
</tr>
<tr>
<td>Ubiquitous Power Grid Laboratory</td>
<td>East Japan Railway Company and Toshiba Corporation</td>
<td>130,000</td>
<td>Jun. 1, 2008 to May 31, 2013</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td>East Japan Railway Company; Toshiba Corporation; Electric Power Development Co., Ltd.; Fuji Electric Co., Ltd.; and Meidensha Corporation</td>
<td>112,500</td>
<td>Jun. 1, 2013 to May 31, 2018</td>
<td></td>
</tr>
<tr>
<td>Basic Materials Management Engineering</td>
<td>NIPPON STEEL CORPORATION; JFE Steel Corporation; Kobe Steel, Ltd.; and Nisshin Steel Co., Ltd.</td>
<td>195,000</td>
<td>Oct. 1, 2017 to Sept. 30, 2022</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>Description</td>
<td>Sponsor</td>
<td>Total amount donated</td>
<td>Duration</td>
<td>Department</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>----------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Chair for Global Consumer Intelligence</td>
<td>Recruit Holding Co., Ltd.; Culture Convenience Club Co., Ltd.; Panasonic Corporation; Industrial Growth Platform, Inc. (IGPI); Wellness Co., Ltd.; KPI Solutions Co., Ltd.; DWANGO Co., Ltd.; Lawson, Inc.; FIELDS Corporation; INTAGE HOLDINGS Inc.; and transcosmos inc. SoftBank Group Corp.</td>
<td>258,000</td>
<td>Apr. 1, 2014 to Mar. 31, 2019</td>
<td>Technology Management for Innovation</td>
</tr>
<tr>
<td>Incubation for new IoT business</td>
<td>Students only</td>
<td>1.5 million US dollars</td>
<td>Apr. 1, 2017 to Mar. 31, 2022</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Construction System Management for Innovation</td>
<td>Japan Federation of Construction Contractors; Civil Engineering Consultants Association; Japan Federation of Survey Planning Associations; Japan Construction Machinery and Construction Association</td>
<td>311,850</td>
<td>Oct. 1, 2018 to Sept. 30, 2021</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Optical Quantum Information Processing</td>
<td>Nichia Corporation</td>
<td>250,000</td>
<td>Apr. 1, 2019 to Mar. 31, 2024</td>
<td>Institute of Engineering Innovation</td>
</tr>
</tbody>
</table>

(3) Social Cooperation Programs (As of April 1, 2019) (Unit: 1,000 yen)

<table>
<thead>
<tr>
<th>Description</th>
<th>Company/entity name</th>
<th>Total cost</th>
<th>Duration</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>The next generation nano / micro devices and systems for low power information processing</td>
<td>IBM Japan, Ltd.</td>
<td>240,000</td>
<td>Apr. 2012 to Mar. 2020</td>
<td>Institute for Innovation in International Engineering Education</td>
</tr>
<tr>
<td>Advanced Aero Propulsion Technology Creation</td>
<td>IHI Corporation</td>
<td>98,400</td>
<td>Apr. 2019 to Mar. 2022</td>
<td>Aeronautics and Astronautics</td>
</tr>
<tr>
<td>Urban Redesign Studies Unit</td>
<td>FUKKEN Co., Ltd. and Asia Air Survey Co., Ltd.</td>
<td>210,000</td>
<td>Apr. 2014 to Mar. 2021</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Technology Incubation for Glass of the Future</td>
<td>AGC Inc.</td>
<td>105,000</td>
<td>Apr. 2018 to Mar. 2021</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Technology Incubation for machiife tool</td>
<td>Mitsubishi Heavy Industries Machine Tool Co., Ltd.</td>
<td>102,000</td>
<td>Apr. 2019 to Mar. 2022</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Intelligent Construction System</td>
<td>Fujita Corporation</td>
<td>75,000</td>
<td>Jan. 2016 to Sep. 2019</td>
<td>Precision Engineering</td>
</tr>
<tr>
<td>Laboratory for Material and Life Sciences for Fusion of Fluorine and Organic Chemistry</td>
<td>AGC Inc.</td>
<td>105,000</td>
<td>Apr. 2017 to Mar. 2020</td>
<td>Chemistry and Biotechnology</td>
</tr>
<tr>
<td>Development of advanced wind power technology</td>
<td>Nippon Kaiji Kyokaï; Hitachi, Ltd; Shimizu Corporation</td>
<td>120,000</td>
<td>Apr. 2017 to Mar. 2020</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Evaluating Future Technology Elements for Mobility</td>
<td>Toyota Motor Corporation</td>
<td>150,000</td>
<td>Jul. 2017 to Jun. 2020</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Mathematical Engineering of Morality Emotions</td>
<td>SoftBank Robotics Corp.</td>
<td>200,000</td>
<td>Sep. 2017 to Aug. 2022</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Description</td>
<td>Company/entity name</td>
<td>Total cost</td>
<td>Duration</td>
<td>Department</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------------</td>
<td>------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Innovation of next generation signal and power transmission technology</td>
<td>Furukawa Electric Co., Ltd.</td>
<td>120,000</td>
<td>Feb. 2018 to Jan. 2021</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Next Generation Medical Radiation Imaging</td>
<td>Delta Electronics, Inc.</td>
<td>195,000</td>
<td>Apr. 2018 to Mar. 2023</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Integrated Risk Engineering</td>
<td>Central Research Institute of Electric Power Industry</td>
<td>150,000</td>
<td>Apr. 2018 to Mar. 2023</td>
<td>Nuclear Professional School</td>
</tr>
<tr>
<td>Sky Frontier Laboratory</td>
<td>Yamaha Motor Co., Ltd.; Hitachi, Ltd; Rakuten, Inc.</td>
<td>75,000</td>
<td>Jan. 2018 to Sep. 2021</td>
<td>Aeronautics and Astronautics</td>
</tr>
<tr>
<td>Next-generation performance evaluation technology for infrastructure materials and structures</td>
<td>Shimizu Corporation; Kajima Corporation; MAEDA CORPORATION; Sumitomo Mitsui Construction Co., Ltd.; Coms Engineering Corporation; Shutoko Engineering Company Limited.; East Japan Railway Company</td>
<td>189,000</td>
<td>Apr. 2019 to Mar. 2022</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Challenge of creative design and startup</td>
<td>Sony Corporation</td>
<td>60,000</td>
<td>Apr. 2019 to Mar. 2022</td>
<td>Mechanical Engineering</td>
</tr>
</tbody>
</table>

(4) Cooperative Programs with National Research and Development Agencies (As of April 1, 2019) (Unit: 1,000 yen)

<table>
<thead>
<tr>
<th>Description</th>
<th>Company/entity name</th>
<th>Total cost</th>
<th>Duration</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergent-Matter Science</td>
<td>RIKEN</td>
<td>420,000</td>
<td>Apr. 2018 to Mar. 2025</td>
<td>Quantum-Phase Electronics Center</td>
</tr>
</tbody>
</table>
8. Finances

(1) Expenditures (Unit: 1,000 yen)

<table>
<thead>
<tr>
<th>Category</th>
<th>Academic year 2016</th>
<th>Academic year 2017</th>
<th>Academic year 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government subsidies for management expenses</td>
<td>9,870,293</td>
<td>10,058,986</td>
<td>10,330,085</td>
</tr>
<tr>
<td>Personnel expenses</td>
<td>7,992,428</td>
<td>8,378,769</td>
<td>8,134,478</td>
</tr>
<tr>
<td>Non-Personnel expenses</td>
<td>1,877,865</td>
<td>1,680,217</td>
<td>2,195,607</td>
</tr>
<tr>
<td>Contract research expenses</td>
<td>8,479,377</td>
<td>8,207,351</td>
<td>8,306,726</td>
</tr>
<tr>
<td>Contract research expenses</td>
<td>6,510,257</td>
<td>5,833,787</td>
<td>6,109,926</td>
</tr>
<tr>
<td>Collaborative research expenses</td>
<td>1,969,120</td>
<td>2,373,564</td>
<td>2,196,800</td>
</tr>
<tr>
<td>Donations</td>
<td>1,004,485</td>
<td>883,349</td>
<td>1,166,501</td>
</tr>
<tr>
<td>Grants-in-Aid for Scientific Research</td>
<td>2,324,731</td>
<td>2,360,245</td>
<td>2,344,630</td>
</tr>
<tr>
<td>Other subsidies</td>
<td>1,474,364</td>
<td>1,413,687</td>
<td>1,184,930</td>
</tr>
<tr>
<td>Indirect expenses, other</td>
<td>500,667</td>
<td>488,098</td>
<td>792,615</td>
</tr>
<tr>
<td>Total</td>
<td>23,653,917</td>
<td>23,411,716</td>
<td>24,125,487</td>
</tr>
</tbody>
</table>

(2) Land and Building Areas (As of April 2019)

<table>
<thead>
<tr>
<th>Category</th>
<th>Graduate School of Engineering</th>
<th>Nuclear Professional School</th>
<th>Kakioka Research Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>7-3-1 Hongo, Bunkyo-ku, Tokyo</td>
<td>2-22 Shirakata-shirane, Tokaimura, Naka-gun, Ibaraki Prefecture</td>
<td>414 Kakioka, Ishioka-shi, Ibaraki Prefecture</td>
</tr>
<tr>
<td>Land area</td>
<td>(Approx) 92,000 m²</td>
<td>29,924 m² (rented: 26,621 m²)</td>
<td>471,931 m²</td>
</tr>
<tr>
<td>No. of buildings</td>
<td>35</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>Building area</td>
<td>36,373 m²</td>
<td>7,154 m²</td>
<td>253 m²</td>
</tr>
<tr>
<td>Total floor area</td>
<td>200,698 m²</td>
<td>12,971 m²</td>
<td>374 m²</td>
</tr>
</tbody>
</table>
9. Public Relations and Information

(1) List of Publications

University of Tokyo Faculty of Engineering Guide (Innovator Next)
Provides introductions to the undergraduate departments at the Faculty of Engineering
Distributed to: Students at the College of Arts and Sciences (available for purchase; Japanese only)
URL: http://www.t.u-tokyo.ac.jp/eng/innovator/pre

2018 Faculty of Engineering Guidebook
Guidebook is intended for use by students of the College of Arts and Sciences interested in studying at the Faculty of Engineering
Distributed to students of the College of Arts and Sciences (available in Japanese only)
URL: http://www.t.u-tokyo.ac.jp/shared/guidance/data/setcmm_guidebook

Ttime!
Biannual PR newsletter created by students from the Faculty of Engineering.
Distributed to senior high school students, preparatory school students, and the general public. Available in Japanese only.
URL: http://www.t.u-tokyo.ac.jp/foee/public_relations/t_time.html

Doctorate: Passport to the World
Booklet with information about the doctoral courses provided at the School of Engineering.
Distributed to students.
URL: http://www.t.u-tokyo.ac.jp/soe/department/data/UT_Dr_2015.pdf

School of Engineering, The University of Tokyo
This English brochure outlines admissions information for the Graduate School of Engineering for international students.
Distributed to: international students, other individuals
URL: http://www.t.u-tokyo.ac.jp/shared/admission/data/setcmm_201706071742289746638451_433245.pdf

Inquiries regarding publications: Public Relations Office (kouhou@pr.t.u-tokyo.ac.jp)

(2) Official websites

- Faculty of Engineering: http://www.t.u-tokyo.ac.jp/foe/index.html
- English website: http://www.t.u-tokyo.ac.jp/foee/index.html
- Graduate School of Engineering: http://www.t.u-tokyo.ac.jp/soe/index.html
- English website: http://www.t.u-tokyo.ac.jp/soee/index.html
- Official Facebook page: https://www.facebook.com/UTokyo.Eng
◆ Subway Access
From Hongo-sanchome Station (Subway Marunouchi Line): 10-minute walk
From Hongo-sanchome Station (Subway Oedo Line): 10-minute walk
From Nezu Station (Subway Chiyoda Line): 5- to 10-minute walk
From Todai-mae Station (Subway Namboku Line): 10-minute walk

◆ Bus Access
From Ochanomizu Station (JR Chuo and Sobu Lines):
Take Toei Bus Cha 51 (bound for Komagome Station or Oji Station) or Toei Bus Higashi 43 (bound for Arakawa-dote). Get off at Todai Akamon-mae, Todai Seimon-mae, or Todai Nogakubu-mae bus stop.
Take Gaku Bus Gaku 07 (bound for Todai-konai) and get off at Todai Tatsuoka-mon, Byoin-mae, or Konai bus stop.
From Ueno Station and Okachimachi Station:
Take Toei Bus To 02 (bound for Otsuka) and get off at Yushima Yonchome bus stop (from Okachimachi Station only).
Take Gaku Bus Gaku 01 (bound for Todai-konai) and get off at Todai Tatsuoka-mon, Byoin-mae, or Konai bus stop.