PRESS RELEASE

Multipole polaron in the devil’s staircase of CeSb

 

【Authors】
Y. Arai, Kenta Kuroda, T. Nomoto, Z. H. Tin, S. Sakuragi, C. Bareille, S. Akebi, K. Kurokawa, Y. Kinoshita, W.-L. Zhang, S. Shin, M. Tokunaga, H. Kitazawa, Y. Haga, H. S. Suzuki, S. Miyasaka, S. Tajima, K. Iwasa, R. Arita, and Takeshi Kondo

【Abstract】
Rare-earth intermetallic compounds exhibit rich phenomena induced by the interplay between localized f orbitals and conduction electrons. However, since the energy scale of the crystal-electric-field splitting is only a few millielectronvolts, the nature of the mobile electrons accompanied by collective crystal-electric-field excitations has not been unveiled. Here, we examine the low-energy electronic structures of CeSb through the anomalous magnetostructural transitions below the Néel temperature, ~17 K, termed the ‘devil’s staircase’, using laser angle-resolved photoemission, Raman and neutron scattering spectroscopies. We report another type of electron–boson coupling between mobile electrons and quadrupole crystal-electric-field excitations of the 4f orbitals, which renormalizes the Sb 5p band prominently, yielding a kink at a very low energy (~7 meV). This coupling strength is strong and exhibits anomalous step-like enhancement during the devil’s staircase transition, unveiling a new type of quasiparticle, named the ‘multipole polaron’, comprising a mobile electron dressed with a cloud of the quadrupole crystal-electric-field polarization.

 

fig-en

 

Nature Materials:https://www.nature.com/articles/s41563-021-01188-9