PRESS RELEASE

Chirality-Induced Magnetoresistance Due to Thermally Driven Spin Polarization


Authors
Kouta Kondou, Masanobu Shiga, Shoya Sakamoto, Hiroyuki Inuzuka, Atsuko Nihonyanagi, Fumito Araoka, Masaki Kobayashi, Shinji Miwa, Daigo Miyajima, and YoshiChika Otani

Abstract
Chirality-induced current-perpendicular-to-plane magnetoresistance (CPP-MR) originates from current-induced spin polarization in molecules. The current-induced spin polarization is widely recognized as a fundamental principle of chiral-induced spin selectivity (CISS). In this study, we investigate chirality-induced current-in-plane magnetoresistance (CIP-MR) in a chiral molecule/ferromagnetic metal bilayer at room temperature. In contrast to CPP-MR, CIP-MR observed in the present study requires no bias charge current through the molecule. The temperature dependence of CIP-MR suggests that thermally driven spontaneous spin polarization in chiral molecules is the key to the observed MR. The novel MR is consistent with recent CISS-related studies, that is, chiral molecules in contact with a metallic surface possess a finite spin polarization.

fige

Journal of the American Chemical Society : https://pubs.acs.org/doi/10.1021/jacs.2c00496